Tire with specified crown reinforcement and carcass profile

Resilient tires and wheels – Tires – resilient – Pneumatic tire or inner tube

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C152S531000, C152S538000, C152S539000, C152S540000, C152S543000, C152S544000, C152S548000, C152S550000, C152S554000, C152S555000

Reexamination Certificate

active

06491077

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention concerns a tire with radial carcass reinforcement and more particularly a tire intended for fitting to vehicles carrying heavy loads and driving at sustained speeds, such as trucks, tractors, trailers or coaches.
A tire of the “Heavy Duty” type generally comprises a radial carcass reinforcement formed of a single ply of metallic reinforcement elements anchored in each bead to at least one bead wire. The said carcass reinforcement is radially covered by a crown reinforcement formed by at least two working plies made of non-extensible metallic reinforcement elements, which are mutually parallel within each ply and crossed over from one ply to the next, making angles which may be between 10° and 45° with respect to the circumferential direction of the tire. The said working plies are generally completed by a so-termed protection ply made of extensible metallic reinforcement elements, and either by a so-termed triangulation ply of non-extensible metallic elements oriented with respect to the circumferential direction at an angle greater than 45° in a known way, or by a ply of reinforcement elements oriented circumferentially, or by both the preceding types of ply.
“Heavy Duty” tires have form ratios H/S, H being the height of the tire on its rim and S being the maximum radial width of the tire when fitted on its working rim and inflated to the recommended pressure, ranging between 0.65 and 1.0. However, “Heavy Duty” tires are now appearing which have smaller form ratios H/S, for example of the order of 0.45.
Whatever the type of tire, it is known that a compromise between the various properties required is difficult to achieve, since unfortunately an improvement in one characteristic usually goes together with a degradation of one or more other properties.
Numerous attempts have been made to try and obtain the best compromise, more particularly in the case of cruising tires. With a view to improving comfort, resistance to punctures and the wear resistance of the tread, the British document GB 359 110 proposes to give the tire, during molding in the vulcanization mold, a shape very similar to its shape under load, while the tread is made circumferentially non-extensible by the presence of an armature of circumferentially continuous cables or wires. Thus, the tire is molded with a low form ratio, markedly incurving sidewalls, and a carcass reinforcement anchored on each side of the equatorial plane to a bead-wire such that at the point of tangency between the meridian profile of the carcass reinforcement and the bead wire arid with respect to a line parallel to the tire's rotation axis, the common tangent to the bead-wire and the said profile makes an angle which is open axially towards the outside and radially towards the inside.
To achieve a very clear improvement of the compromise between comfort, road-holding and the stability of the tire, U.S. Pat. No. 3,486,547 describes a tire with a low form ratio H/S, which may be between 0.25 and 0.75, and in which the areas of the sidewall close to the edges of the rim are essentially parallel to the rotation axis of the tire, the said areas being reinforced by radially non-extensible rings and the said rings being of various constitutions. Such a structure entails fitting the tire on a rim whose width W is small compared with the maximum axial width S of the said tire, the ratio W/S being between 0.25 and 0.75.
A similar tire is also described in the patent FR 1 267 264, and is intended to enable a compromise between comfort, road-holding, low rolling resistance and high resistance to wear. In order to increase the structural flexibility of the carcass reinforcement assembly considerably while avoiding the disadvantages that automatically go together with such an increase, the said carcass reinforcement has very curved sidewalls and is covered by a cylindrical crown reinforcement which is circumferentially non-extensible and preferably formed of longitudinal reinforcement elements. Near-the anchoring bead-wires, the carcass reinforcement has portions with tangents that are horizontal or situated at radii smaller than the radii of the rim edges, the said portions being reinforced in the case described by circumferential reinforcement elements.
U.S. Pat. No. 4,029,139 also concerns a tire with a form ratio H/S preferably between 0.40 and 0.60 such that the ratio W/S of the rim width W to the maximum axial width S of the tire is smaller than 0.65. It describes a particular system for fitting the beads to the rim, such that the parts of the bead close to the rim are essentially horizontal.
The development of a “Heavy Duty” type tire and the adaptation to the said tire of the principles mentioned above have proved disappointing. In effect, if comfort is improved the general endurance of the tire is not, whether this applies to endurance in terms of wear or the fatigue endurance of the tire's various reinforcements.
SUMMARY OF THE INVENTION
The object of the invention is to improve the general endurance of this type of tire while at the same time improving its rolling resistance.
The tire according to the invention, which has a form ratio H/S between 0.3 and 0.8, comprises a carcass reinforcement of equatorial radius R
SS
±&Dgr;R
SS
, where &Dgr;R
SS
is equal to 1 times the minimum thickness of the said reinforcement, which is covered radially by an essentially or quasi-cylindrical crown reinforcement formed by at least one working ply, of circumferential reinforcement elements, the said carcass reinforcement, on either side of the equatorial plane, being on the one hand tangential to a circle C termed the holding circle, such that the common tangent to the said circle C and to the meridian profile of the carcass reinforcement makes at the tangency point between the said profile and the holding circle, and with respect to a line parallel to the rotation axis passing through the said tangency point, an angle between +20° and −80°, and on the other hand, in its portion between the said tangency point and the point of greatest axial width, being provided with a reinforcement armature made of circumferentially non-extensible elements. It is characterized in that, viewed in meridian section, and when the tire is fitted on its working rim and inflated to the recommended pressure, the centerline of each half of the main portion of the carcass reinforcement has a meridian profile composed of four circular arcs:
a first circular arc TA of radius r′
l
, comprised between or equal to the quantities r
1
, and/or 2r
1
, which is on the one hand tangential to the holding circle C, concentric with the circle of the rim edge of radius r
1
, and located radially above and separated from the said edge by a distance e
T
at least equal to twice the minimum thickness e of the carcass reinforcement, and which on the other hand has a point of intersection A with
a second circular arc AE of radius r″
1
, comprised between the quantities r
1
and 2r
1
, which is tangential to the line perpendicular to the rotation axis passing through the point E of greatest axial width,
a third circular arc EF of radius r
2
, which is tangential to the second arc of a circle AE at the point E of greatest axial width and also tangential to a fourth arc of a circle FG, parallel to the quasi-cylindrical crown reinforcement, at a point F separated from the line parallel to the rotation axis and passing through the center O
J
of the holding circle C by a distance d, where the quantities d, r
1
and r
2
satisfy the relationships:
d=r
2
+(
r
1
+ar
J
+e
T
)cos &agr; and
r
1
=r
2
R
SS
/(
R
SS
−r
2
)
 where &agr; is the angle which the tangent at T makes with respect to a line parallel to the rotation axis, and a is a constant which can have the values −1,0 or +1, and
a fourth circular arc FG of radius R
TC
equal to the transverse radius R
T
of the crown reinforcement, reduced by at most the minimum thickness of the carcass reinforcement,
and in t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tire with specified crown reinforcement and carcass profile does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tire with specified crown reinforcement and carcass profile, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tire with specified crown reinforcement and carcass profile will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2956378

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.