Turning – Severing or cut-off – Infeed means
Reexamination Certificate
2001-05-07
2003-07-01
Ackun, Jacob K. (Department: 3712)
Turning
Severing or cut-off
Infeed means
C082S165000
Reexamination Certificate
active
06584877
ABSTRACT:
RELATED PATENT APPLICATIONS
None.
FIELD OF THE INVENTION
In general, the present invention relates to tire uniformity machines. More particularly, the present invention relates to a drive assembly in a tire uniformity machine. Most particularly, the present invention relates to a spindle drive assembly in a tire uniformity machine.
BACKGROUND OF THE INVENTION
Generally, tire uniformity machines are used to test the characteristics of tires after production. This testing may include measurement of the dimensional characteristics of the tire and the forces on the tire at varying loads. To accomplish load testing, the tire is brought into the tire uniformity machine, mounted on a chuck, inflated and rotated by a drive assembly coupled to the spindle of the chuck while a load wheel is brought into contact with the periphery of the tire.
Previously, these drive assemblies have included a motor mounted on the tire uniformity machine at a distance from a spindle to which the load wheel or chuck was mounted. The motor is then coupled to the spindle by a belt or a chain to drive the spindle. For measurement purposes, a timing belt is typically used to couple the motor to the spindle. As is common in the art, the timing belt contains a number of cogs or teeth that mate with similar cogs on a cog wheel attached to the drive shaft of the motor. The fit between each cog is limited by machining tolerances introducing some error in the measurement of the spindle's rotation. Further, the cogs on the timing belt generate significant vibration as they are engaged, introducing additional error into the measurements taken at the tire.
These errors are exacerbated when either the cog wheel or timing belt have bad teeth. The presence of a bad tooth, i.e., one that is improperly sized or has been damaged or worn causing it to mesh imprecisely with mating teeth, may cause some slipping or other movement of the timing belt relative to the cog wheel or spindle and can often increase the magnitude of the vibration. The presence of a bad tooth is typically identified by a sudden increase in noise, often a growling sound, or by shaking created by operation of the machine. This increase occurs periodically as the bad tooth is engaged. As a practical matter, the vibration caused by the presence of teeth, which is increased when bad teeth are present, introduces error in the measurements taken by the tire uniformity machine. For instance, the teeth cause the rotational velocity of the spindle, as measured by the tire uniformity machine to appear not constant. In making the velocity measurement, the teeth on the timing belt cause ripples in the measured velocity, and bad teeth may cause a spike in this measurement.
In effect, errors created by the drive assembly essentially cause a false reading of the spindle's rotational velocity. Inasmuch as other measurements performed by the tire uniformity machine rely on the accurate measurement of these rotational velocities, the drive assembly errors migrate throughout the tire uniformity machine measurements, in effect, creating a false baseline on which further measurements are superimposed. As a consequence, the devices measuring the tire are actually measuring the tire as well as the motor thus preventing these devices from isolating the tire's characteristics.
As a separate matter, the prior art drive assemblies are bulky and less responsive in making changes in the rotational direction of the tire. As previously discussed, the typical drive assembly has a motor, cog wheel, and timing belt coupled to a spindle that drives the chuck. At times during the testing process, it is necessary to change the direction of rotation of the tire. In the majority of prior art systems, machining tolerances, and the additional inertia of these components increases the amount of time necessary to reverse the motor and change the direction of the tire or loadwheel. While the period for changing the direction of the tire may be on the order of seconds or tenths of a second, these small periods accumulate with the large numbers of tires that are processed in a continuing production process in a given period of time. Reducing the time required to change direction during operation of the tire uniformity machine will result in the processing of a significant number of additional tires in a given period of time.
SUMMARY OF THE INVENTION
In light of the foregoing, at least one object of the present invention is to provide a drive assembly for a tire uniformity machine that has a reduced influence on the measurement of spindle velocity in the machine.
Another object of the present invention is to provide a drive assembly that directly drives the spindle without a timing belt and cog wheel assembly.
In accordance with at least one of these objects, the present invention provides a tire uniformity machine having a framework for receiving a tire to be tested, a rotatable chuck assembly located within the framework having a spindle driven by a motor assembly having a motor directly coupled to the spindle to selectively cause rotation thereof, whereby the tire is chucked within the chuck assembly and caused to rotate by the motor assembly for testing purposes.
The present invention further provides a tire uniformity machine having a framework for receiving a tire to be tested, a rotatable chuck assembly located within the framework, the chuck assembly including an upper chuck assembly and a lower chuck assembly movable in the axial direction to chuck a tire entering the framework for testing, the upper chuck assembly including a spindle axially supported by the framework but freely rotatable therein; a motor assembly directly coupled to the spindle, the motor assembly having an annular stator assembly receiving a portion of the spindle and a rotor assembly rotatable under a field generated by the stator assembly, the rotor assembly being keyed to the spindle, whereby application of a drive current to the stator assembly causes the spindle to rotate, whereby the tire is chucked within the upper and lower chuck assemblies and caused to rotate by energizing the motor assembly.
The present invention further provides a drive assembly in a tire uniformity machine having a framework for receiving a tire to be tested by application of simulated forces via a rotatable load wheel, the drive assembly including a spindle axially supported on the framework and freely rotatable therein; a motor assembly having an annular stator assembly defining a bore for receiving the spindle and a rotor assembly adjacent the stator assembly coupled to the spindle, whereby the stator and the spindle are caused to rotate by energizing the motor assembly.
REFERENCES:
patent: 5257561 (1993-11-01), Folta
patent: 5893793 (1999-04-01), Nishio et al.
Delmoro Richard L.
Krause David P.
Poling, Sr. David
Ackun Jacob K.
Akron Special Machinery, Inc.
Taylor Reese
LandOfFree
Tire uniformity machine drive assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tire uniformity machine drive assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tire uniformity machine drive assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3041541