Road structure – process – or apparatus – Traffic steering device or barrier
Reexamination Certificate
2000-05-03
2002-06-25
Hartmann, Gary Scott (Department: 3673)
Road structure, process, or apparatus
Traffic steering device or barrier
Reexamination Certificate
active
06409418
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to apparatuses for deflating the tires of a vehicle, and specifically, to an apparatus having a plurality of permanent blades rotatably disposed within a base for immediately destroying a tire of a vehicle upon engagement.
2. Related Art
Tire deflation devices are well known in the prior art and are available in many different shapes and sizes. These devices typically comprise some type of support base containing a plurality of hollow spikes. The base is placed on a road surface so that a passing vehicle runs over the device and the spikes are removed from the base and puncture one or more tires, thereby allowing air to escape the tire and stopping the vehicle.
One problem shared by most of the conventional tire deflation devices is that these devices are intended to be either entirely or partially disposable. That is, there are tire deflation devices that after a single use, a user simply disposes of the used device or must purchase and install replacement spikes that have been removed from the device by a passing vehicle. Therefore, there is a need for a tire deflation device that does not have to be either entirely replaced nor requires replacement spikes after a single use.
In addition to the above limitation, most conventional tire deflation devices are large and cumbersome wherein the support base typically has a length designed to cover a significant portion, e.g., a lane of traffic, of a road surface. In certain instances, a conventional tire deflation device may be shorter than the length of a lane of traffic, but still designed to be longer than a width of a single tire. None of these conventional devices, however, can be adjusted in terms of their length to provide a variable length tire deflation device. Therefore, there is a need for a tire deflation device, that is modular wherein multiple modules can be connected to create a tire deflation device of any variable length, thereby covering any desire length of road surface.
As yet another disadvantage to conventional tire deflation devices, these devices use hollow spikes as the means for deflating a vehicle's tires. As the vehicle passes over the device, a front tire of a vehicle engages one or more spikes, removes the spikes from the device, and as the vehicle travels away from the device, the air in the front tire slowly escapes, thereby bringing the vehicle to a controlled stop.
There are several problems with using removable hollow spikes in a tire deflation device. First, vehicles engaging these conventional tire deflation devices can travel for long distances past the device before stopping. This is because the air escapes the tire(s) slowly resulting in a controlled deflation of the tire(s). As a result, law enforcement personnel using such a conventional tire deflation device must continue to pursue the vehicle which may result in other unforeseen problems, e.g., abandoned cars, continuation of unsafe high speed chases, and an increased risk of accidents.
Second, the spikes are intended to be removed from the device upon impact with a tire such that the removed spikes must be replaced with new spikes and the device is rendered virtually unusable until the removed spikes are replaced with new spikes. Also, there are often instances where some spikes are not removed by the vehicle, but are damaged nonetheless, e.g., bent, broken, etc., thereby still requiring their replacement before the device is usable against another vehicle. In alternative conventional devices, the entire device is intended to be disposable wherein after a single use the device must be disposed of.
Third, if the spikes are not removable from the device, then the spikes must be strong enough to withstand the stresses of a tire engaging and then disengaging from the spikes. Once disengaged, the spike will leave a hole in the tire. However, because the tire is made of rubber, the resulting hole may be partially or completely closed off due to the elastic properties of the tire rubber. Therefore, once again the vehicle does not come to an immediate stop, but rather may travel for a distance before stopping and increasing the opportunity for further damage and injury.
Fourth, and most importantly, these conventional tire deflating devices only disable the front tires of a passing vehicle. This is because when the front tires of a vehicle engage the device, the front tires remove the spikes. Therefore, when the rear tires engage the device, there are no spikes to engage the rear tires because the rear tires often follow the same path as the front tires. As a result, the conventional tire deflating devices are only effective in engaging the front tires of a vehicle.
Therefore, there is a need for a tire deflation device that stops a vehicle immediately upon engaging the tire deflation device. There is a further need for a tire deflation device that does not require replacement parts, e.g., spikes, every time the device is used to stop a vehicle. There is still a further need for a tire deflation device that engages and renderes useless both the front and rear tires of a passing vehicle.
Lastly, conventional tire deflation devices do not incorporate any means for warning oncoming traffic as to the existence or location of the tire deflation device. If law enforcement personnel wants to warn oncoming traffic of the device, a separate warning device, e.g., a sign, flag, or flagman, must be employed. Therefore, the law enforcement personnel must manage multiple devices or means for warning which is very awkward and cumbersome.
Therefore, there is a need for a tire deflation device that incorporates a means for warning oncoming traffic as to the existence and location of the tire deflation device.
SUMMARY OF THE INVENTION
The present invention solves the problems associated with conventional tire deflation devices by providing a tire deflating blade system designed to be deployed and retracted by a single individual. The tire deflating blade system comprises a plurality of tire deflating blade system modules that can be adjacently and pivotally connected together to form a tire deflating blade system of variable length. When not in use, the tire deflating blade system modules of the present invention are housed in a storage container.
Each tire deflating blade system module comprises a base being generally rectangular in shape and having an end profile that is generally trapezoidal in shape. One or more blades are permanently disposed in the base and are rotatably connected to a shaft that runs longitudinally through the base, such that the blades can be moved between a retracted position for storage and an armed position for deflating tires. The blades are very strong having a plurality of sharpened edges and at least two sharp points. In addition, an optional cover plate is positioned over each blade to ensure safety while handling and storing the device while the blades are in the retracted position, thereby preventing anyone and any thing from being cut by the blades.
A tire deflating blade system module of the present invention also incorporates a means for engaging the blades into these two positions. Possible means include a mechanical switch, an electronic switch, or hydraulic or remote means. The preferred embodiment comprises a mechanical switch, e.g. a lever, connected to the tire deflating blade system module, such that with a pull of a lever, the blades are put in an armed position and with a push of the lever, the blades return to a retracted position.
In storage, the modules of a tire deflating blade system of the present invention are stacked up and stored in a storage container wherein the blades are in a retracted position. A user deploys the tire deflating blade system by placing the modules across one or more lanes of traffic as needed. The user can deploy and interconnect two or more modules depending on the needed coverage. Also, the modules are interconnected to allow the user to raise and lower all of the blades of all of the deployed modules i
Blair David R.
Blair William H.
Steele Robert E.
Hartmann Gary Scott
PMG, Inc.
Steptoe & Johnson PLLC
LandOfFree
Tire deflating blade system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Tire deflating blade system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tire deflating blade system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2893433