TIR lens for uniform brightness

Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S573000, C313S113000, C313S317000

Reexamination Certificate

active

06429581

ABSTRACT:

TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
This invention relates to radiant energy manipulation, collection, redirection and concentration. More particularly, this invention relates to the use of a totally internal reflecting (TIR) lens used to capture and redirect light from an extended light source such as a neon or fluorescent lamp.
BACKGROUND OF THE INVENTION
TIR elements are well known and have been proposed for use in a variety of applications. For example, U.S. Pat. No. 4,337,759 (Popovich et al.) describes the design and use of TIR lenses for various technologies including photovoltaic cells, thermoelectric cells, thin films, lasers, photochemical, solar power and other means which use radiant energy. Further, U.S. Pat. No. 5,404,869 (Parkyn, et al) discloses improvements in the design of such lenses including the use of curved faceted TIR surfaces instead of using a flat surface for better collimation, focusing, and increased design freedom. Additionally, the '869 patent discloses a lens that redirects light from the source onto a spot in front of the lens giving more efficient focusing and brightness.
One of the asserted uses of such a lens is in conjunction with an aspheric lens for elimination of some illumination non-uniformity typical of earlier TIR lenses, making it particularly useful in imaging projectors, light emitting diodes (LED), optical fibers, spectrophotometers, and toroidal lamp reflection in a forward orientation good for battery powered fluorescent lights.
In addition, U.S. Pat. No. 5,577,493 discloses an apparatus comprising a TIR lens plus a “light ray deviator” positioned along the light path between the source and the TIR lens, for deviating light toward portions of the lens spaced from the axis, thereby more evenly distributing light flux at the TIR lens. The improvement was thought to be useable with liquid crystal displays (LCD) to enhance the incandescent light sources ability to illuminate uniformly. Moreover, U.S. Pat. No. 5,613,769 (Parkyn et al.) discloses a TIR lens having non-circular configuration around an optical axis that is asserted to be suitable for holographic diffusers and lenticular lenslet arrays to produce tailored output intensities useful for compact LED light sources. It also discloses TIR facets in a lens increasingly separating in one arc and increasingly converging in a second arc, a lens where the perimeter is non-circular, or rectangular, or square, thus creating what is described as a“mushroom lens.” Such lenses are said to provide a powerful way of controlling the light beam, with improved collimation as the result of the entire beam having the same angular spread resulting in improved propagation.
In general, although the use of TIR lenses began with efforts to concentrate light, in particular, solar energy, for various uses, developmental efforts in the field are now directed toward uses in light emitting devices and the concentration and focusing of light from low energy sources in a highly efficient manner for illumination purposes. Perhaps one of the most significant improvements exemplified by use of a TIR lens is that one can focus light from a source nearly 90 degrees from the target, whereas use of a traditional refraction based lens would limit the angle from source to target to only about 30 degrees. This development allows the design of lamps or collectors with significantly higher efficiencies.
Unfortunately, however, the prior art relating to the use of TIR lenses with a neon or fluorescent lamp are based on an array of facets which capture light from the source through one face of the facet (the entry face) and then internally reflect it off the other face, thus redirecting the light to the target zone or viewer out an exit face of the lens. In each case, the side of the facet from which the light is reflected appears bright to the target zone or viewer, while the entry face of the facet appears dark. So, for an entire circular lens surface covering a lamp, for example, the light would appear to the target zone or viewer as a series of concentric bright rings separated from each other by a series of concentric dark rings. The bright rings are the result of viewing the light leaving the TIR facet at the reflecting face and directed toward the viewer or target. The dark rings are the result of the light entering the TIR facet. Such a pattern is reminiscent of the series of light and dark lines seen as a result of passing light through a Fresnel lens. The ring effect can be lessened by increasing the number or density of facets in the TIR lens, thereby decreasing the thickness of the lines or rings, but cannot be eliminated. Any attempt to increase the facet density to compensate for this problem results in higher tooling costs and construction complexity. Further, the increased density also results in a loss of efficiency of the lens due to the increased tip effects at the point of each TIR facet.
Another problem encountered with the use of conventional TIR lenses to focus light concerns their efficiency. In order to maximize the focusing power of TIR lenses, it is necessary to construct the lens in such a manner as to catch the incident light not directly in front of the lens. This is normally accomplished by either curving or “wrapping around” the lens, and by the addition of alternate reflecting means to bounce the light from the source traveling away from the TIR lens back toward the lens. Such curvature or additional reflectors may not be desirable from a design point of view when a flat or uniformly curved lamp surface is desired.
Co-pending, co-assigned U.S. Ser. No. 09/112,564 has disclosed one approach for alleviating this problem by integrating optical elements into the lamp. The above improvements notwithstanding, there continues to be a need for a TIR lens which allows for focusing of light without creation of the alternating dark/light concentric ring pattern, and which simultaneously allows for the construction of such a TIR lens with a flat or uniformly curved surface. These needs are met by the invention described herein.
SUMMARY OF THE INVENTION
The present invention provides a TIR lens that efficiently focuses light without the creation of light/dark concentric rings, and which can be used in the form of a uniformly curved or flat surface. These two advantages are accomplished by using TIR facets which collect light from two different sources simultaneously. Consequently, from the viewer's angle, the light directed does not have concentric rings and is uniformly bright across the surface of the lens. Moreover, the lens can be manufactured so that it has either a flat, smooth or uniformly curved surface. Further, the TIR lenses of the present invention allow the light to be focused and gathered with high efficiency.
The improvements over the prior art are accomplished by each TIR facet having two reflecting faces which can capture light from two different sources; unlike the prior art facets having a reflecting and a refracting face. The angle defined by the two faces of the TIR element is dependent on the angle of the desired incident light which is being redirected, and is similar in that regard to prior art TIR elements. By appropriate selection of this angle, the brightness of the light is extended across the refractive element and both faces of the TIR facet in a uniform manner.
The improved facets are preferably used in conjunction with closely spaced radiant energy sources placed proximally to the entry faces of the lens apparatus. The radiant energy sources may be oriented either linearly (parallel to each other), circularly (toroid), or could in fact, be arbitrarily oriented with respect to the lens elements. The radiant energy sources may be mounted or otherwise disposed on a support, or they may be formed within a support substrate such as discharge channels formed in a glass substrate which is filled with a noble gas. One particularly useful method for forming a device in which the radiant energy source is formed within a support substrate is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

TIR lens for uniform brightness does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with TIR lens for uniform brightness, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and TIR lens for uniform brightness will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2958389

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.