Tin-indium alloy electroplating solution

Electrolysis: processes – compositions used therein – and methods – Electrolytic coating – Depositing predominantly alloy coating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S001050

Reexamination Certificate

active

06331240

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a tin/indium alloy electroplating solution.
2. Description of the Related Art
The pollution of soil and subterranean water has recently become an issue, which pollution is caused by acid-rain elution of lead from tin/lead alloy used in waste home electronic and electric appliances. This is because tin/lead alloy is widely used in mounting electronic components. Therefore, the development of a mounting solder alloy or solder plating not containing lead is keenly desired. As a plating method not giving rise to such a problem, tin/indium alloy plating is now considered promising. The tin/indium alloy plating has heretofore been adopted as a low-melting plating, and in many of the conventional tin/indium alloy plating methods the indium content is 40 to 60 wt %. For example, in “Metal Surface Finishing (in Japanese)” Vol. 16, No. 6, pp. 246-250 (1965) there is disclosed an “Indium-tin alloy plating” solution as an indium alloy plating solution, in which the indium content is 50 wt % or so and sodium potassium tartrate is used as a chelating agent.
Also in “Metal Surface Finishing (in Japanese)” Vol. 15, No. 8, pp. 283-288 (1964) there is disclosed “Indium-tin alloy plating,” in which, however, a cyanide and an alkali cyanide are used as essential components.
It is a principal object of the present invention to provide a cyanide-free tin/indium alloy electroplating solution capable of forming a tin/indium alloy plating film superior in smoothness in a wide electric current density range a n d capable of being put to practical use industrially.
SUMMARY OF THE INVENTION
Having made earnest studies, the present inventors found out that the following plating solution containing no cyanide could afford a uniform electroplated film in a wide electric current density range. On the basis of this finding we accomplished the present invention.
The present invention resides in a cyanide-free tin/indium alloy electroplating solution which comprises an aqueous solution containing a tetravalent tin salt of metastannic acid, a trivalent indium salt of an organosulfonic acid, a chelating agent, and caustic alkali and having a pH value of 7 to 11.
The present invention, in a preferred embodiment thereof, resides in the above tin/indium alloy electroplating solution wherein the chelating agent is at least one member selected from lithium, sodium and potassium salts of citric acid, tartaric acid, gluconic acid, heptonic acid, malic acid, and ascorbic acid, and the total concentration thereof is in the range of 20 to 500 g/L.
The present invention, in a further preferred embodiment thereof, resides in the above tin/indium alloy electroplating solution wherein the caustic alkali, which is used as a pH adjustor, is at least one member selected from lithium hydroxide, sodium hydroxide, and potassium hydroxide, and the total concentration thereof is in the range of 8 to 400 g/L.
The present invention, in a still further preferred embodiment thereof, resides in the above tin/indium alloy plating solution, which contains 0~300 g/L of an organosulfonic acid as an electrically conductive salt forming agent.
DETAILED DESCRIPTION OF THE INVENTION
The tin/indium alloy electroplating solution of the present invention will be described in detail hereinunder.
The metal salts used as the first essential component in the plating solution of the invention are a tetravalent tin salt of metastannic acid, such as lithium, sodium or potassium metastannic (IV) acid, and a trivalent indium salt of an organosulfonic acid, such as lithium, sodium or potassium salt of the trivalent indium. As the organosulfonic acid, an alkanesulfonic acid is preferred, examples of which include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, 2-propanesulfonic acid, butanesulfonic acid, 2-butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, and decanesulfonic acid. One or more of these organosulfonic acids may be the trivalent indium salt and the electrically conductive salt forming agent both used in the present invention.
As the chelating agent, which is the second essential component in the plating solution of the present invention, there is used one or more selected from lithium, sodium and potassium salts of citric acid, tartaric acid, gluconic acid, heptonic acid, malic acid, and ascorbic acid.
The chelating agent forms a chelate bond with tin and indium for a preferential deposition of tin and indium and for preventing a deposition obstructing phenomenon and functions to cause tin and indium to be deposited at a desired deposition ratio. The concentration of the chelating agent in the plating solution is 20 to 500 g/L.
The caustic alkali used as the third essential component in the plating solution of the present invention is lithium, sodium or potassium hydroxide. At least one such caustic alkali is added into the plating solution at a concentration of 8 to 400 g/L, preferably 50 to 150 g/L. The caustic alkali is added as a pH adjustor. It is necessary to adjust the pH value of the plating solution to a value of 7 to 11, preferably 8 to 10.
As plating work conditions using the tin/indium alloy electroplating solution of the invention, an appropriate electric current density is in the range of 0.1 to 30 A/dm
2
and an appropriate solution temperature is in the range of 100° to 60° C. With the use of the plating solution of the invention, it is possible to form a uniform and smooth tin/indium alloy plating film, the plating work can be done at a higher electric current density than in the use of a conventional plating solution of the same type, and thus the working efficiency is improved, one reason for which is that the plating solution does not contain any cyanide.
According to the cyanide-free tin/indium alloy electroplating solution of the invention, a uniform tin/indium alloy plating film superior in both smoothness and macrothrowing power can be formed in a wide electric current density range. Thus, the tin/indium alloy electroplating solution of the invention is suitable for industrial application.


REFERENCES:
Jura Ota, et al., “Plating of Indium-Tin Alloy,”Metal Surface Finishing(Japanese), vol. 16, No. 6, pp. 246-250 (1965) No month provided.
Hisako Suzuki, “The Plating of Indium-Tin Alloy,”Metal Surface Finishing(Japanese), vol. 15, No. 8, pp. 283-288 (1964) No month provided.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tin-indium alloy electroplating solution does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tin-indium alloy electroplating solution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tin-indium alloy electroplating solution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2598118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.