Electricity: measuring and testing – Of geophysical surface or subsurface in situ – Using electrode arrays – circuits – structure – or supports
Reexamination Certificate
2006-11-02
2010-02-23
Aurora, Reena (Department: 2858)
Electricity: measuring and testing
Of geophysical surface or subsurface in situ
Using electrode arrays, circuits, structure, or supports
C324S338000, C324S339000
Reexamination Certificate
active
07667464
ABSTRACT:
A method for measuring a resistivity of a subsurface formation that includes transmitting continuously a signal at a first fundamental frequency at full power for a first period of time within a single window of time causing electromagnetic energy to propagate in the subsurface formations, transmitting continuously the signal at a second fundamental frequency at full power for a second period of time within the single window of time causing electromagnetic energy to propagate in the subsurface formations, measuring variations in the electromagnetic energy propagated through the subsurface formations at receivers at the first and the second fundamental frequencies, and determining the resistivity of the subsurface formations using the measurements of the variations in electromagnetic energy at the receivers.
REFERENCES:
patent: 4147973 (1979-04-01), Weber
patent: 4282486 (1981-08-01), Culver et al.
patent: 4617518 (1986-10-01), Srnka
patent: 4633182 (1986-12-01), Dzwinel
patent: 5654638 (1997-08-01), Shoemaker
patent: 2070345 (1981-09-01), None
patent: WO0214906 (2002-02-01), None
Boerner, David E. et al., Orthogonality in CSAMT and MT Measurements, Geophysics, vol. 58, No. 7, Jul. 1993, pp. 924-934.
Chave, Alan D. et al., Controlled Electromagnetic Sources for Measuring Electrical Conductivity Beneath the Oceans, Journal of Geophysical Research, vol. 87, No. B7, pp. 5327-5338, Jul. 10, 1982.
Chave, Alan D. et al., Electrical Exploration Methods in Applied Geophysics vol. 2, Electrical Exploration Methods for the Seafloor, Chapter 12, 1991, pp. 931-966.
Constable, S. et al., Marine Controlled-Source Electromagnetic Sounding, Journal of Geophysical Research, vol. 101, No. B3, Mar. 10, 1996, pp. 5519-5530.
Constable, S. et al., Occam's Inversion: A Practical Algorithm for Generating Smooth Models from Electromagnetic Sounding Data, Geophysics, vol. 52, No. 3, Mar. 1987, pp. 289-300.
Edwards, R. Nigel, On the Resource Evaluation of Marine Gas Hydrate Deposits Using Sea-Floor Transient Electric Dipole-Dipole Methods, Geophysics vol. 62, No. 1, Jan.-Feb. 1997, pp. 63-74.
Edwards, R.N., Controlled Source Electromagnetic Mapping of the Crust, Encyclopedia of Solid Earth Geopysics, ed. James D. Van Nostrand Reinhold, New York, 1989, pp. 127-138.
Yuan, J. et al., Electromagnetic Assessment of Offshore Methane Hydrate Deposits on the Cascadia Margin, American Geophyiscal Union Fall Meeting, San Francisco, 1998, pp. 363-375.
Kearey, Philip, The Encyclopedia of the Solid Earth Sciences, Blackwell Scientific Publications.
Evans, Rob L. et al., On the Electrical Nature of the Axial Melt Zone at 13 Degrees N on the East Pacific Rise, Journal of Geophysical Research, vol. 99, No. B1, Jan. 10, 1994, pp. 577-588.
Flosadottir, A. et al., Marine Controlled-Source Electromagnetic Sounding, Journal of Geophysical Research, vol. 101, No. B3, Mar. 10, 1996, pp. 5507-5517.
U.S. Dept. of Energy Office of Basic Energy Sciences, Division of Engineering and Geosciences, Two and Three-Dimensional Magnetotelluric Inversion, Technical Report: Dec. 1, 1991-May 31, 1994.
Grant, I.S. et al., Electromagnetism, Second Edition, John Wiley & Sons.
Kaufman, A. et al., Methods in Geochemistry and Geophysics, 16.
Kvenvolden, K. et al., A Primer on the Geological Occurrence of Gas Hydrate, Gas Hydrates: Relevance to World Margin Stability and Climate Change, Geological Society, London, Special Publications, 137, 9-30.
MacGregor, L. et al., The RAMESSES Experiment—III. Controlled-Source Electromagnetic Sounding of the Reykjanes Ridge . . . , Geophys. J. Int. 1998, 135, pp. 773-789.
MacGregor, L. et al., Use of Marine Controlled Source Electromagnetic Sounding for Sub-Basalt Exploration, EAGE 61st Conference and Technical Exhibition, Helsinki, Finland, Jun. 7-11, 1999.
Nekut, A. et al., Petroleum Exploration Using Controlled-Source Electromagnetic Methods, Proceedings of the IEEE, vol. 77, No. 2, Feb. 1989.
Sinha, M. C. et al., Evidence for Accumulated Melt Beneath the Slow-Spreading Mid-Atlantic Ridge, Phil. Trans. R. Soc. Land. A, 355, 1997, pp. 233-253.
Sinha, Martin, Controlled Source EM Sounding: Survey Design Considerations for Hydrocarbon Applications, LITHOS Science Report Apr. 199, 1, 95-101.
Sinha, M. et al., An Active Source Electromagnetic Sounding System for Marine Use, Marine Geophysical Researches 1990, 12: 59-68.
Strack, K. et al., Integrating Long-Offset Transient Electromagnetic (LOTEM) with Seismics in an Exploration Environment, Geophysical Prospecting, 1996, 44, 997-1017.
Tseng, H. et al., A Borehole-to-Surface Electromagnetic Survey, Geophysics vol. 63, No. 5, pp. 1565-1572.
Das, Umesh C., Apparent Resistivity Curves in Controlled-Source Electromagnetic Sounding Directly Reflecting True Resistivities in a Layered Earth, Geophysics vol. 60, No. 1, Jan.-Feb. 1995, pp. 53-60.
Das, Umesh C., Frequency- and Time-Domain Electromagnetic Responses of Layered Earth-A Multiseparation, Multisystem Approach, Geophysics vol. 60, No. 1, Jan.-Feb. 1995, pp. 285-290.
Thompson, Arthur H. et al., U.S. Statutory Invention Registration H1490, Sep. 5, 1995.
Walker, Peter W. et al., Parametric Estimators for Current Excitation on a Thin Plate, Geophysics vol. 57, No. 6, Jun. 1992, pp. 766-773.
Ward, S.H. et al., Electromagnetic Theory for Geophysical Applications, in Investigations in Geophysics: Electromagnetic Methods in Applied Geophysics, ed. Nabighian, Society of Exploration Geophysicists, Oklahoma, 1988.
Yuan, J. et al., The Assessment of Marine Gas Hydrates through Electrical Remote Sounding: Hydrate without a BSR?, Geophysical Research Letters, vol. 27, Aug. 2000, pp. 2397-2400.
Yuan, Edwards et al., Electromagnetic Assessment of Offshore Methane Hydrate Deposits on the Cascadia Margin, MARELEC 1999.
Maurer, Hansruedi et al., Optimized Design of Geophysical Experiments, SEG Paper.
Grant, I.S. et al., Electromagnetic Waves, Chapter 11, pp. 365-407.
Aurora Reena
McEnaney Kevin
WesternGeco L.L.C.
Ye Liangang (Mark)
LandOfFree
Time segmentation of frequencies in controlled source... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Time segmentation of frequencies in controlled source..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time segmentation of frequencies in controlled source... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4173828