Time-of-flight mass spectrometry analysis of biomolecules

Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S42300F

Reexamination Certificate

active

06281493

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to the field of mass spectrometry. In particular, the invention relates to a pulsed ion source for time-of-flight mass spectrometry and to methods of operating a mass spectrometer.
BACKGROUND OF THE INVENTION
Mass spectrometry is an analytical technique for accurate determination of molecular weights, the identification of chemical structures, the determination of the composition of mixtures, and qualitative elemental analysis. In operation, a mass spectrometer generates ions of sample molecules under investigation, separates the ions according to their mass-to-charge ratio, and measures the relative abundance of each ion.
Time-of-flight (TOF) mass spectrometers separate ions according to their mass-to-charge ratio by measuring the time it takes generated ions to travel to a detector. TOF mass spectrometers are advantageous because they are relatively simple, inexpensive instruments with virtually unlimited mass-to-charge ratio range. TOF mass spectrometers have potentially higher sensitivity than scanning instruments because they can record all the ions generated from each ionization event. TOF mass spectrometers are particularly useful for measuring the mass-to-charge ratio of large organic molecules where conventional magnetic field mass spectrometers lack sensitivity. The prior art technology of TOF mass spectrometers is shown, for example, in U.S. Pat. No. 5,045,694 and 5,160,840 specifically incorporated by reference herein.
TOF mass spectrometers include an ionization source for generating ions of sample material under investigation. The ionization source contains one or more electrodes or electrostatic lenses for accelerating and properly directing the ion beam. In the simplest case the electrodes are grids. A detector is positioned a predetermined distance from the final grid for detecting ions as a function of time. Generally, a drift region exists between the final grid and the detector. The drift region allows the ions to travel, in free flight, a predetermined distance before they impact the detector.
The flight time of an ion accelerated by a given electric potential is proportional to its mass-to-charge ratio. Thus the time-of-flight of an ion is a function of its mass-to-charge ratio, and is approximately proportional to the square root of the mass-to-charge ratio. Assuming the presence of only singly charged ions, the lightest group of ions reaches the detector first and are followed by groups of successively heavier mass groups.
In practice, however, ions of equal mass and charge do not arrive at the detector at exactly the same time. This occurs primarily because of the initial temporal, spatial, and kinetic energy distributions of generated ions. These initial distributions lead to broadening of the mass spectral peaks. The broadened spectral peaks limits the resolving power of TOF spectrometers.
The initial temporal distribution results from the uncertainty in the time of ion formation. The time of ion formation may be made more certain by utilizing pulsed ionization techniques such as plasma desorption and laser desorption. These techniques generate ions during a very short period of time.
An initial spatial distribution results from ions not being generated in a well-defined plane perpendicular to the flight axis. Ions produced from gas phase samples have the largest initial spatial distributions. Desorption techniques, such as plasma desorption or laser desorption ions, result in the smallest initial spatial distributions because ions originate from well defined areas on the sample surface and the initial spatial uncertainty of ion formation is negligible. The initial energy distribution results from the uncertainty in the energy of the ions during formation. A variety of techniques have been employed to improve mass resolution by compensating for the initial kinetic energy distribution of the ions. Two widely used techniques use an ion reflector (also called ion mirror or reflectron) and pulsed ion extraction.
Pulsed ionization such as plasma desorption (PD) ionization and laser desorption (LD) ionization generate ions with minimal uncertainty in space and time, but relatively broad initial energy distributions. Conventional LD typically employs sufficiently short pulses (frequently less than 10 nanoseconds) to minimize temporal uncertainty. However, in some cases, ion generations may continue for some time after the laser pulse terminates causing loss of resolution due to temporal uncertainty. Also, in some cases, the laser pulse generating the ions is much longer than the desired width of mass spectral peaks (for example, several IR lasers). The longer pulse length can seriously limit mass resolution. The performance of LD may be substantially improved by the addition of a small organic matrix molecule to the sample material, that is highly absorbing, at the wavelength of the laser. The matrix facilitates desorption and ionization of the sample. Matrix-assisted laser desorption/ionization (MALDI) is particularly advantageous in biological applications since it facilitates desorption and ionization of large biomolecules in excess of 100,000 Da molecular mass while keeping them intact.
In MALDI, samples are usually deposited on a smooth metal surface and desorbed into the gas phase as the result of a pulsed laser beam impinging on the surface of the sample. Thus, ions are produced in a short time interval, corresponding approximately to the duration of the laser pulse, and in a very small spatial region corresponding to that portion of the solid matrix and sample which absorbs sufficient energy from the laser to be vaporized. This would very nearly be the ideal source of ions for time-of-flight (TOF) mass spectrometry if the initial ion velocities were also small. Unfortunately, this is not the case. Rapid ablation of the matrix by the laser produces a supersonic jet of matrix molecules containing matrix and sample ions. In the absence of an electrical field, all of the molecular and ionic species in the jet reach nearly uniform velocity distributions as the result of frequent collisions which occur within the jet.
The ion ejection process in MALDI has been studied by several research groups. R. C. Beavis, B. T. Chait,
Chem. Phys. Lett.,
181, 1991, 479. J. Zhou, W. Ens, K. G. Standing, A. Verentchikov,
Rapid Commun. Mass Spectrom.,
6, 1992, 671-678. In the absence of an electrical field, the initial velocity distributions for peptide and protein ions produced by MALDI are very nearly independent of mass of the analyte and laser intensity. The average velocity is about 550 m/sec with most of the velocity distribution between 200 and 1200 m/sec. The velocity distribution for matrix ions is essentially identical to that of the peptides and proteins near threshold irradiance, but shifts dramatically toward higher velocities at higher irradiance. The total ion intensity increases rapidly with increasing laser irradiance, ranging from about 10
4
ions per shot near threshold to more than 10
6
at higher irradiance. In the presence of an electrical field, the ions show an energy deficit due to collisions between ions and neutrals. This energy deficit increases with both laser intensity and electrical field strength and is higher for higher mass analyte ions than it is for matrix ions.
The observation that the initial velocity distribution of the ions produced by MALDI is nearly independent of mass implies that the width of the initial kinetic energy distribution is approximately proportional to the square root of the mass as well as the energy deficit arising from collisions with neutral particles in the accelerating field. Thus the mass resolution, at high mass, in conventional MALDI decreases with the increasing mass-to-charge ratio of the ions. Use of high acceleration potential (25-30 kV) increases the resolution at high mass in direct proportion to the increase in accelerating potential.
The adverse effect of the initial kinetic energy distribution can be partly eliminated by pulsed ion extracti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Time-of-flight mass spectrometry analysis of biomolecules does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Time-of-flight mass spectrometry analysis of biomolecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time-of-flight mass spectrometry analysis of biomolecules will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2449696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.