Radiant energy – Ionic separation or analysis – Ion beam pulsing means with detector synchronizing means
Reexamination Certificate
2002-05-24
2004-01-27
Lee, John R. (Department: 2881)
Radiant energy
Ionic separation or analysis
Ion beam pulsing means with detector synchronizing means
C250S282000
Reexamination Certificate
active
06683299
ABSTRACT:
FIELD OF THE INVENTION
The invention is a time-of-flight mass spectrometer (TOF) capable of monitoring fast processes. More particularly, it is a TOF for monitoring the elution from an ion mobility spectrometer (IMS) operated at pressures between a few Torr and atmospheric pressure. This apparatus is an instrument for qualitative and/or quantitative chemical and biological analysis.
BACKGROUND OF THE INVENTION
There is an increasing need for mass analysis of fast processes, which in part, arises from the popularity of fast multi-dimensional separations techniques like GC-TOF, Mobility-TOF, or EM-TOF, (electron monochromator) etc. In those methods, the TOF serves as a mass monitor scanning the elution of the analyte of the prior separation methods.
There are numerous other fields of application involving the investigation of fast kinetic processes. Two examples are the chemical processes during gas discharges, and photon or radiofrequency induced chemical and plasma ion etching. In the case of gas discharges one may monitor the time evolution of products before, during and after the abrupt interruption of a continuous gas discharge or during and after the pulsed initiation of the discharge. An analogous monitoring of the chemical processes in a plasma etching chamber can be performed. The time profile of chemical products released from a surface into a plasma can be determined either during and after the irradiation with laser pulses or before, during and after the application of a voltage which induces etching (e.g., RF plasma processing). A third such example is the time evolution of ions either directly desorbed from a surface by energetic beams of X-ray, laser photons, electrons, or ions. In addition, when the ions are desorbed from a surface there is usually a more predominant codesorption of non-ionized neutral elements and molecules whose time evolution can be monitored by first post ionizing neutral species which have been desorbed and then measuring mass separated time evolution of the ions by mass spectrometry. Yet a fourth area of use is the monitoring of the time evolution of neutral elements or molecules reflected after a molecular beam is impinged on a surface. The importance of such studies range from fundamental studies of molecular dynamics at surfaces to the practical application of molecular beam epitaxy to grow single crystalline semiconductor devices. A further application for fast analysis is presented by Fockenberg et al.
In all such studies the time evolution of ion signals which have been mass resolved in a mass spectrometer is crucial. TOF instruments have become the instrument of choice for broad range mass analysis of fast processes.
TOF instruments typically operate in a semi-continuous repetitive mode. In each cycle of a typical instrument, ions are first generated and extracted from an ion source (which can be either continuous or pulsed) and then focused into a parallel beam of ions. This parallel beam is then injected into an extractor section comprising a parallel plate and grid. The ions are allowed to drift into this extractor section for some length of time, typically 5 &mgr;s. The ions in the extractor section are then extracted by a high voltage pulse into a drift section followed by reflection by an ion mirror, after which the ions spend additional time in the drift region on their flight to a detector. The time-of-flight of the ions from extraction to detection is recorded and used to identify their mass. Typical times-of-flight of the largest ions of interest are in the range of 20 &mgr;s to 200 &mgr;s. Hence, the extraction frequencies are usually in the range of 5 kHz to 50 kHz. If an extraction frequency of 50 kHz is used, the TOF is acquiring a full mass spectrum every 20 &mgr;s. After each extraction, it takes some finite time for the ions of the primary beam to fill up the extraction chamber. This so-called fill up time is typically relatively shorter for lighter ions as compared to heavier ions because they travel faster in the primary beam. For light ions, the fill up time may be as short as 1 &mgr;s whereas for very large ions, the fill up time may exceed the 20 &mgr;s between each extraction, and hence those large ions never completely fill up the extraction region. The fill up time depends on the ion energy in the primary beam, the length of the extraction region and the mass of the ions.
Some fast processes, however, require monitoring with a time resolution in the microsecond range. For example, a species eluting from an ion mobility spectrometer may elute through the orifice within a time interval of 15 &mgr;s. If this species also has a small fill up time it is possible that this elution occurs between two TOF extractions in such a way that the TOF completely misses the eluting species.
Known techniques to solve this problem are based on increasing the extraction frequency. In general, the ion flight time in the TOF section will determine the maximum extraction frequency, shorter flight times yielding higher extraction rates. The ion flight time is shortened by either increasing the ion energy in the drift section, or by reducing the length of the drift section. Increasing the ion energy is the preferred method, because decreasing the drift length results in a loss of resolving power. However, because the relationship between ion energy E and the time-of-flight T is a square-root dependence, an increase in energy only leads to a minimal decrease in flight time:
T
=
a
E
Thus, more effective methods and corresponding apparatuses for monitoring such fast ion processes while minimizing the loss in sensitivity that occurs when eluted ions are not counted by the detector are needed.
SUMMARY OF THE INVENTION
One embodiment of the present invention consists of an apparatus comprising an ion source for repetitively generating ions, an ion extractor fluidly coupled to the ion source and extracting ions from it for time-of-flight measurement in a time-of-flight mass section. A position sensitive ion detector is fluidly coupled to the time-of-flight mass section to detect the ions. The apparatus also has a timing controller in electronic communication with the ion source and the ion extractor. The timing controller tracks and controls the time of activation of the ion source and activates the ion extractor according to a predetermined sequence. A data processing unit for analyzing and presenting data said data processing unit is in electronic communication with the ion source, the ion extractor, and the detector.
In a specific embodiment, the predetermined sequence includes a time offset between the activation of the ion source and the activation of the ion extractor. This time offset may be variable. Typical time offset ranges from 0 to 1000 &mgr;s.
Another specific embodiment includes an adjustment means for adjusting the kinetic energies of said ions upon entering said extractor according to their mass. In yet another embodiment, the apparatus has a position sensitive ion detector having a meander delay line. In specific embodiments, the detector may have multiple meander delay lines. The position sensitive ion detector may have multiple anodes. In a specific embodiment, the multiple anode detector may have anodes of different size.
Another aspect of the instant invention is a method of determining the temporal profile of fast ion processes. This is accomplished by generating ions in an ion source, controlling and tracking the time of the step of generating by a timing controller, and activating extraction of said ions in a single or repetitive manner according to a predetermined sequence. The extracted ions are then separated in a time-of-flight mass spectrometer and detected with a position sensitive ion detector capable of resolving the location of impact of the ion onto the detector. The ions are then analyzed to determine the time characteristics of the fast ion processes from the ion impact location information, the time from the step of tracking, and the time of activation of the extractor. The temporal profile of the fas
Egan Thomas
Fuhrer Katrin
Gillig Kent J.
Gonin Marc
McCully Michael I.
Fulbright & Jaworski L.L.P.
Gurzo Paul M.
Ionwerks
Lee John R.
LandOfFree
Time-of-flight mass spectrometer for monitoring of fast... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Time-of-flight mass spectrometer for monitoring of fast..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time-of-flight mass spectrometer for monitoring of fast... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3260370