Time division multiple access downlink personal...

Multiplex communications – Communication over free space – Having a plurality of contiguous regions served by...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S401000, C370S465000

Reexamination Certificate

active

06185198

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to systems for transmitting and receiving wireless data messages. More specifically, the invention relates to data transmission methodologies and apparatuses for data messaging on wireless communications networks such as Cellular Mobile Telephone (CMT),Personal Communication Systems (PCS), Global System for Mobile (GSM), and mobile satellite networks such as Iridium Satellite and Teledisc Satellite communications networks.
2. Description of Related Art
A variety of methods and apparatuses have been proposed for enabling wireless radio communications based on transmitted data rather than voice. However, serious and significant problems exist in this area as capacity, coverage, transmission quality, and delivery of data messages is limited by available frequencies and limitations inherent in existing transmission schemes. The present invention provides a method for greatly increasing the capacity, performance, coverage, and delivery of data messages over wireless communications networks such as cellular, PCS, and mobile satellite. The present invention utilizes a variable burst remote access application messaging (VBRAAM) method and apparatus to seamlessly, and in an essentially transparent manner to the wireless communications network standards or conventional operating procedures, increase data messaging capability, capacity, and performance by the VBRAAM messaging method and apparatus disclosed.
Although no known prior methods or apparatuses are known to the inventor which disclose either the methods or apparatuses of the present invention, the following series of patents and patent applications filed by the present inventor relate to methods and apparatuses for enhancing the capacity, performance, coverage, and functionality of wireless communications networks. An example is seen in U.S. Pat. No. 5,525,969 to the present inventor where a monitoring device for location verification of a person or object is disclosed. Data verifying the position and status of the object or person may be communicated via cellular control channels of a wireless communications network. Other representative patent applications of the present inventor disclose control channel application data (CCAD) methods, for example, U.S. patent application Ser. Nos. 08/250,665, 08/524,972, now U.S. Pat. No. 5,525,969 and Ser. No. 08/544,977 now U.S. Pat. No. 5,574,399 for transmitting data messages over control channels, for monitoring, control, and communication with various mobile and/or stationary apparatuses, two-way paging applications, vehicle tracking, and the like. Other patent filings by the present inventor disclose a remote access application messaging methodology (RAAM) and a control channel application data remote access application messaging (CCAD-RAAM) seen, for example, in U.S. patent application Ser. No. 08/571,347 where application-specific messaging bits are transmitted over wireless communications network control channels and switches by use of a specially configured data packet configured to appear as an origination data packet within the wireless communications network. Also related to the instant disclosure are patent applications filed by the present inventor for voice and data debit billing methods and apparatuses for cellular, PCS, and mobile satellite. Examples of such filings are U.S. patent application Ser. Nos. 08/619,363 and 08/619,960. The present method and apparatus for variable burst remote access application messaging (VBRAAM) extends such disclosed methods and apparatuses and allows for a seamless and transparent capacity upgrade to wireless communications networks allowing for two-way data messaging, paging, text communication for short messaging, file transfer and Internet access over cellular, personal communications systems (PCS), and mobile satellite networks.
Examples of wireless communications networks allowing for two-way communications include cellular mobile radiotelephone (CMR), which is linked to the public switched telephone network (PSTN) and allows for communications between two mobile radiotelephone users or between a mobile radiotelephone user and a conventional phone. Conventional CMR networks feature a radio coverage area divided into smaller coverage areas or “cells” using power transmitters and coverage-restricted receivers. The limited coverage allows the radio channels used in one cell to be reused in another cell. As a cellular user within one cell moves across the boundary of the cell and into an adjacent cell, control circuitry associated with the cells detect that the signal strength of the radiotelephone in the entered cell is stronger, and communications are transferred to the entered cell. In this manner CMR networks allow two-way communications for an array of cells. However, the frequency spectrum for CMR is a limited spectrum, particularly the voice channels, resulting in the need to increase capacity and data messaging ability.
Many techniques have been proposed and implemented addressing the capacity issue in CMR networks. For example time division multiple access (TDMA) enhancement methods; narrowband (N)-AMPS methods, where the 30 kHz RF channel is split into three discrete 10-kHz channels; direct sequence code division multiple access (CDMA) spread-spectrum technology, where the bandwidth is available in every cell and is shared by spreading each user across the band with a different (uncorrelated) spreading sequence; and other spread-spectrum methods employ frequency-hopping techniques overlaid on conventional TDMA structures.
More recent approaches to enhance capacity and performance in CMR, such as the patents and patent applications of the present inventor cited above, have utilized control, traffic, or access channels of the CMR network for data messaging. Other uses of such channels are seen in Statutory Invention Register H610 to Focarile, Mar. 7, 1989, where a cellular pager is disclosed utilizing call control channels for one-way data messaging. U.S. Pat. No. 5,420,911 issued to Dahlin et al., May 30, 1995 discloses a CMR network utilizing both analog and digital control channels for transmitting analog of digital control information. Somewhat different approaches are seen in U.S. Pat. No. 4,825,457 issued to Lebowitz, Apr. 25, 1989, where a system acts as an adjunct to a landline communications system for security system monitoring, and U.S. Pat. No. 4,831,371 issued to Hess, May 16, 1989, which discloses a method to allocate data channels on a trunked communication system.
Other attempts to increase capacity in a CMR network include U.S. Pat. No. 5,526,401 issued to Roach et al. Jun. 11, 1996, where a data messaging method and apparatus are disclosed for data messaging on a CMR paging network using the manipulation of mobile identification numbers (MIN) and electronic serial numbers (ESN) to send a message over the control channels. A related disclosure, PCT International Patent Application WO 95/24791 of Roach et al. Sep. 14, 1995, disclosed a related control channel data messaging method and apparatus. Such disclosed methods and apparatus, although allowing for limited messaging on a control channel of a CMR, are significantly cumbersome, inefficient, and costly, and such limitations have undoubtedly been a reason such methods and apparatuses have not received widespread acceptance.
Another example of wireless communications networks is personal communications systems (PCS), which are the focus of a tremendous amount of interest, both in the United States and around the world. The global telecommunications network today forms the infrastructure for an information based society where instantaneous communications capability is critically important. PCS networks are projected to permit millions of people worldwide to initiate person-to-person communications using small and inexpensive low-power telephone handsets and related devices. The essential distinguishing technical characteristic of PCS is that the frequencies identified for PCS by the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Time division multiple access downlink personal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Time division multiple access downlink personal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time division multiple access downlink personal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596108

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.