Time and drive systems for a multifunction ink jet printer...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06398339

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to maintenance stations for ink jet printing apparatus.
2. Description of Related Art
Ink jet printers have at least one printhead that directs droplets of ink towards a recording medium. Within the printhead, the ink may be contained in a plurality of channels. Energy pulses are used to expel the droplets of ink, as required, from orifices at the ends of the channels.
In a thermal ink jet printer, the energy pulses are usually produced by resistors. Each resistor is located in a respective one of the channels, and is individually addressable by current pulses to heat and vaporize ink in the channels. As a vapor bubble grows in any one of the channels, ink bulges from the channel orifice until the current pulse has ceased and the bubble begins to collapse. At that stage, the ink within the channel retracts and separates from the bulging ink to form a droplet moving in a direction away from the channel and towards the recording medium. The channel is then re-filled by capillary action, which in turn draws ink from a supply container. Operation of a thermal ink jet printer is described in, for example, U.S. Pat. No. 4,849,774.
A carriage-type thermal ink jet printer is described in U.S. Pat. No. 4,638,337. That printer has a plurality of printheads, each with its own ink tank cartridge, mounted on a reciprocating carriage. The channel orifices in each printhead are aligned perpendicular to the line of movement of the carriage. A swath of information is printed on the stationary recording medium as the carriage is moved in one direction. The recording medium is then stepped, perpendicular to the line of carriage movement, by a distance equal to the width of the printed swath. The carriage is then moved in the reverse direction to print another swath of information.
The ink ejecting orifices of an ink jet printer need to be maintained, for example, by periodically cleaning the orifices when the printer is in use, and/or by capping the printhead when the printer is out of use or is idle for extended periods. Capping the printhead is intended to prevent the ink in the printhead from drying out. The cap provides a controlled environment to prevent ink exposed in the nozzles from drying out.
A printhead may also need to be primed before initial use, to ensure that the printhead channels are completely filled with the ink and contain no contaminants or air bubbles. After significant amounts of printing, and at the discretion of the user, an additional but reduced volume prime may be needed to clear particles or air bubbles which cause visual print defects. Maintenance and/or priming stations for the printheads of various types of ink jet printers are described in, for example, U.S. Pat. Nos. 4,364,065; 4,855,764; 4,853,717 and 4,746,938, while the removal of gas from the ink reservoir of a printhead during printing is described in U.S. Pat. No. 4,679,059.
The priming operation, which usually involves either forcing or drawing ink through the printhead, can leave drops of ink on the face of the printhead. As a result, ink residue builds up on the printhead face. This ink residue can have a deleterious effect on the print quality. Paper fibers and other foreign material can also collect on the printhead face while printing is in progress. Like the ink residue, this foreign material can also have deleterious effects on print quality.
The 717 patent discloses moving a printhead across a wiper blade at the end of a printing operation so that dust and other contaminants are scraped off the orifice before the printhead is capped, and capping the printhead nozzle by moving the printer carriage acting on a sled carrying the printhead cap. This eliminates the need for a separate actuating device for the cap. The 938 patent discloses providing an ink jet printer with a washing unit which, at the end of the printing operation, directs water at the face of the printhead to clean the printhead before it is capped.
SUMMARY OF THE INVENTION
This invention provides a cam-activated lever capping arm, a wiping mechanism and a pinch tube mechanism for a maintenance station for an ink jet printer.
In one exemplary embodiment of the maintenance station according to this invention, one or more printheads are mounted on a translatable carriage and moves with the carriage. When the printer is printing, the translatable carriage is located in a printing zone, where the one or more printheads can eject ink onto a recording medium. When the printer is placed into a non-printing mode, the translatable carriage is translated to the maintenance station located outside and to one side of the printing zone. Once the cartridge is translated to the maintenance station, various maintenance functions can be performed on the one or more printheads of the printer depending on the rotational position of a cam shaft in the maintenance station. The cam shaft engages and drives the hardware that in turn operates the individual maintenance functions.
Rotating the cam shaft activates various maintenance mechanisms of the maintenance station, including a wiper blade platform and a cap carriage. The wiper platform passes across the printhead nozzle faces when the one or more printheads enter the maintenance station and again just before the one or more printheads leave. A location for collecting ink cleared from the nozzles is placed adjacent to the wiper blades. After the one or more printheads arrive at the maintenance station, a vacuum pump is energized, and the cap carriage is elevated to the position where the one or more printhead caps engage the one or more printheads. The one or more printhead caps are mounted on the cap carriage in a capping location. The printheads are primed when a pinch tube mechanism opens one or more pinch tubes connected to the one or more printhead caps. Opening the pinch tubes releases negative pressure created by the vacuum pump. In response, ink is drawn from the one or more printheads into the one or more printhead caps.
Further moving the cam shaft lowers the cap carriage and enables the wiper blades to pass back across the nozzle faces to clean the ink jet printhead nozzles. The vacuum pump is then deenergized, while the cap carriage remains in position so that the one or more printhead caps cap the one or more printheads awaiting the printing mode of the printer. Thus, the one or more printheads remain capped at the maintenance station until the printer is into the printing mode.
The predetermined time that the printhead carriage is positioned adjacent to the maintenance station, including the gear and cam-actuated valve closing and the predetermined time that the printhead carriage is located relative to the capping platform, as controlled by the controller, determines pressure profiles and waste ink volumes. The controller enables a spectrum of waste ink volume and pressure profiles. One waste ink volume and pressure profile is appropriate for the initial installation of the cartridge, when the one or more capped printheads are kept a longer time at the capping location, to help ensure that all ink flow paths between the nozzles and supply cartridge are completely primed. A second waste ink volume and pressure profile is appropriate for a manual refresh prime. During such a manual refresh prime, the one or more capped printheads are kept at the capping location a relatively shorter time to prime only the one or more printheads.
These and other features and advantages of this invention are described in or are apparent from the detailed description of various exemplary embodiments of the systems and methods according to this invention.


REFERENCES:
patent: 4746938 (1988-05-01), Yamamori et al.
patent: 4853717 (1989-08-01), Harmon et al.
patent: 4855764 (1989-08-01), Humbs et al.
patent: 5151715 (1992-09-01), Ward et al.
patent: 5170186 (1992-12-01), Shimamura et al.
patent: 5250962 (1993-10-01), Fisher et al.
patent: 5339102 (1994-08-01), Carlotta
patent: 5434605 (1995-07-01), Osborne
patent: 5500659 (1996-03-01), Curr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Time and drive systems for a multifunction ink jet printer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Time and drive systems for a multifunction ink jet printer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time and drive systems for a multifunction ink jet printer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925030

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.