Tiled electronic display structure and method for modular...

Liquid crystal cells – elements and systems – Particular structure – Interconnection of plural cells in parallel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S187000

Reexamination Certificate

active

06683665

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention concerns electronic display devices and, in particular, a method for repairing tilemodules in large-area display devices that are formed as an array of tiled display devices.
There is an unmet need for large-area flat displays. No clear solution is apparent in the market place. This unmet need is becoming increasingly critical since the advancement of information results in increasing amounts of data to be displayed. A solution for large-area displays is needed to serve as the human interface for conveying information from sensors, computers, databases, cameras, etc. in this information dominated age. Many critical applications demand large-area displays:
Home theater applications
Applications that require multiple viewers
Applications in which the user needs to move about in an area
Applications where simulation of the real world is needed for training.
The requirements for each application differs in size, shape, total number of picture elements (pixels), and brightness. Requirements that are common to most applications include, a relatively large number of pixels, color, ruggedness, portability (minimum thickness and weight), reliability, low power, and affordable cost. A good display solution does not exist for these needs using present technology.
There are fundamental technical issues that impose scaling-laws and limit the complexity and size of displays that can be profitably manufactured. These fundamental limitations are one reason why a technical solution that meets the need for large-area displays has not been achieved.
One measure of the complexity of a display device is its total number of pixels. The evolution of display technology has made newer and more complex pixel formats possible—VGA, SVGA, XGA, and SXGA for instance. Increased complexity typically is accompanied by added costs. The underlying cause of this empirical complexity law is yield losses caused by random material or particle defects. These defects cause manufacturing yields to diminish as the number of pixels in the display increases.
The measure of size of the display is its area. Costs increase exponentially with size. Each technology, LCD, PDP, EL, etc., has its own limit on maximum size. The underlying technical cause of this empirical relationship is tolerance. It is desirable to hold tight tolerances in manufacturing displays because, as the size increases, the effects of thermal expansion, humidity, residual stresses, and physical sag become more important.
Building a large-area display out of smaller tiles has been recognized as a desirable solution. Tiling is an approach that provides great flexibility for size and shape. Tiling is not subject to many of the problems that limit the size of monolithic display technologies. The complexity law does not apply because, depending on the size of the tile, the basic unit of manufacture in tiled displays is less complex than a large, monolithic multipixel display. The size law is not a limiting factor because the basic unit of manufacture is relatively small. Tiled displays obey a scaling-law which is not exponential but linear with display area. This fundamentally different scaling behavior is one advantage of tile technology. It makes these displays possible and reduces manufacturing costs.
These same issues lead to a desire to provide a repair means for large-area display devices, particularly the issues of ruggedness, reliability, and affordable price. The smaller the unit that must be replaced, or repaired, when a defect occurs, the less the expense incurred in the repair. Again tiling may provide-an answer, through the approach of modular repair. In a tiled display the individual tiles are desirably inexpensive, relatively, to manufacture. A system designed to allow for the replacement of an individual tile is, therefore, less expensive to repair. Also the expense of the repair would depend on the size and complexity of the individual tiles, not the size and complexity of the entire display, eliminating the scaling-law issue of large-area displays with regard to their repair.
One type of tiled display is disclosed in U.S. patent application Ser. No. 09/250,324 filed on Feb. 16, 1999, which is incorporated herein by reference for its teaching on tiled displays. This application describes an OLED display which is formed as tiles that may be joined together to provide a large-area display device.
SUMMARY OF THE INVENTION
The present invention is embodied in a tiled display structure containing a plurality of image tiles. The plurality of image tiles are coupled to a transparent front panel of the display structure using a heat-activated adhesive.
The present invention is embodied in a method for assembling a tiled display structure that includes a transparent front panel and a plurality of image tiles, each of which includes a display section. The first step of this exemplary method is to heat a heat activated adhesive to a working temperature. The working temperature is above the softening point temperature of the adhesive and below a damage threshold temperature of the tiles. The softened adhesive is applied to at least one of: the front surface of the display section of an image tile, or the inner surface of the transparent front panel. Next the surface of the display section of the image tile is aligned with the inner surface of the transparent front panel such that the adhesive forms a thin layer between the two surfaces. Then the adhesive is cooled below the softening point temperature to couple the tile to transparent front panel.
Another aspect of the present invention is a method of repairing a tiled display structure, which includes a transparent front panel, a heat activated adhesive, and a plurality of image tiles, each image tile including a display section. The first step of this exemplary method is to heat the heat activated adhesive in a region of the tiled display structure corresponding to a defective tile to a working temperature. The working temperature is above the softening point temperature of the adhesive and below a damage threshold temperature of the tiles. The defective tile is then pulled away from the inner surface of the transparent front panel.
Once the defective tile has been removed, heated heat activated adhesive may be applied to at least one of: the front surface of the display section of a replacement image tile, and the inner surface of the transparent front panel in the region of the defective tile. The surface of the display section of the replacement image tile is aligned with the portion the inner surface of the transparent front panel in the region of the defective tile such that the adhesive forms a thin layer between the surface of the display section of the replacement image tile and the inner surface of the front panel. The adhesive is then cooled below the softening point temperature to couple the replacement tile to the transparent front panel.


REFERENCES:
patent: 3828215 (1974-08-01), Bilsback
patent: 4471263 (1984-09-01), Harvey
patent: 4508990 (1985-04-01), Essinger
patent: 4515440 (1985-05-01), Mosier
patent: 4792500 (1988-12-01), Kojima
patent: 4843280 (1989-06-01), Lumbard et al.
patent: 5281805 (1994-01-01), Sauer
patent: 5317236 (1994-05-01), Zavracky et al.
patent: 5661531 (1997-08-01), Greene et al.
patent: 5668569 (1997-09-01), Greene et al.
patent: 5867236 (1999-02-01), Babuka et al.
patent: 5889568 (1999-03-01), Seraphim et al.
patent: 6005653 (1999-12-01), Matsuzawa
patent: 6078379 (2000-06-01), Nagae et al.
patent: 6370019 (2002-04-01), Matthies et al.
patent: 6461775 (2002-10-01), Pokorny et al.
G. Mueller, R. Mach, G. U. Reinsperger, L. Schrottke; “Tiling Thin-Film Electroluminescent Displays,” SID 91 Digest, pp 567-570.
S.C. Thayer, “Late-News Paper: Modular Wall-Size IC-Driven Flat-Panel Displays,” SID 92 Digest pp. 950-953.
N. Mazurek, T. Zammit, “A 51-in.-Diagonal Tiled LCD VGA Monitor,” SID 93 Digest, pp. 614-617.
S. C. Thayer, “Active-Driven TFEL Displays Using Ceramic Tiling,” SID 93 Digest, pp. 618-621.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tiled electronic display structure and method for modular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tiled electronic display structure and method for modular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tiled electronic display structure and method for modular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3252749

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.