Ti(C,N)-(Ti,Ta,W)(C,N)-Co alloy for general finishing...

Alloys or metallic compositions – Titanium base

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C420S421000, C148S421000

Reexamination Certificate

active

06344170

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a sintered body of a carbonitride alloy with titanium as a main component which has improved properties particularly when used as cutting tool material in general finishing cutting operations requiring high deformation resistance in combination with relatively high toughness. More particularly, the present invention relates to a carbonitride based hard phase of specific chemical composition with an extremely solution-hardened Co-based binder phase. Said binder phase has properties similar to the binder phase of WC—Co based materials except that it has been possible to increase the solution hardening beyond the point where eta-phase normally would appear.
BACKGROUND OF THE INVENTION
Titanium-based carbonitride alloys, so called cermets, are produced by powder metallurgical methods and comprise carbonitride hard constituents embedded in a metallic binder phase. The hard constituent grains generally have a complex structure with a core surrounded by a rim of a different composition. In addition to titanium, group VIa elements, normally both molybdenum and tungsten, are added to facilitate wetting between binder and hard constituents and to strengthen the binder by means of solution hardening. Group IVa and/or Va elements, e.g. Zr, Hf, V, Nb, and Ta, are also added in all commercial alloys available today. The carbonitride forming elements are usually added as carbides, nitrides and/or carbonitrides. Historically, the binder phase in cermets has been nickel, most likely because Ti has a high solubility in Ni to facilitate sufficient wetting to obtain a low porosity level. During the 1970s a solid solution binder of cobalt and nickel was introduced. This was probably made possible by improved raw material quality, in particular, a lower impurity level of oxygen. Today all commercial alloys contain 3-25 wt % of a solid solution binder with relative proportions Co/(Co+Ni) in—the range 50-75 at %.
Cermets are today well established as insert material in the metal cutting industry. Compared to WC—Co based materials, cermets have excellent chemical stability when in contact with hot steel, even if the cermet is uncoated, but have substantially lower strength. This makes them most suited for finishing operations, which generally are characterized by limited mechanical loads on the cutting edge and a high surface finish requirement on the finished component. Unfortunately, cermets suffer from unpredictable wear behavior. In a worst case, complete tool failure is caused by bulk fracture which may lead to severe damage of the work piece as well as tool holder and machine. More often, tool failure is caused by small edge line fractures, which abruptly change the surface finish or dimensions obtained. Common for both types of damages is that they are stochastic or sudden in nature and occur without previous warning. For these reasons cermets have a relatively low market share especially in modern, highly automated production which relies on a high degree of predictability to avoid costly production stops.
One way to improve predictability, within the intended application area, would be to increase the toughness of the material and work with a larger safety margin. However, so far this has not been possible without simultaneously reducing the wear- and deformation resistance of the material to a degree, which substantially lowers productivity.
SUMMARY OF THE INVENTION
It is an object of the present invention to solve the problem described above and others. It is indeed possible to design and produce a material with substantially improved toughness while maintaining deformation and wear resistance on the same level as conventional cermets. This has been achieved by working with the alloy system Ti—Ta—W—C—N—Co. Within this system a set of constraints has been found rendering optimum properties for the intended application area.
In one aspect, the present invention provides a titanium based carbonitride alloy containing Ti, Ta, W, C, N and Co, particularly useful for finishing operations requiring high deformation resistance in combination with relatively high toughness characterized in that the binder is formed of 9 to <12 at % Co with only impurity levels of Ni and Fe.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
In preferred aspects of the present invention, conventional Ni containing binder phase is replaced with a Co-based binder as in WC—Co alloys, i.e. the chemically stable hard phase of cermets is combined with the tough binder of cemented carbides. Co and Ni behave substantially differently during deformation and dissolve substantially different amounts of the individual carbonitride formers. For these reasons Co and Ni are not interchangeable as has previously commonly been believed. For, applications such as general finish turning of steel, including light interrupted cuts and profiling, or light finish milling the amount of Co required is 9 to <12 at %, preferably 9-10.5 at %.
The binder must be sufficiently solution hardened. This is accomplished by designing the hard phase in such a way that substantial amounts of predominantly W atoms are dissolved in the Co. It is well known that Ti, Ta, C and N all have low or very low solubility in Co, while W has high solubility. Thus, within this alloy system the binder will be essentially a Co—W solid solution as is the case for WC—Co alloys. Solution hardening is usually measured indirectly as relative magnetic saturation, i.e. the ratio of the magnetic saturation of the binder phase in the alloy compared to the magnetic saturation of an equal amount of pure cobalt. For WC—Co alloys close to the graphite limit, a relative magnetic saturation of “one” is obtained. By decreasing the carbon content of the alloy solution hardening is increased and reaches a maximum at a relative magnetic saturation of about 0.75. Below this value, eta-phase is formed and solution hardening can no longer be increased. For the alloys in the present invention it has been found that solution hardening can be driven substantially further compared to WC—Co alloys by a combination of relatively high N content, high Ta content and low interstitial balance. The exact reason for this is unknown, but leads to improved properties probably since thermal expansion of the cermet hard phase is larger than for WC and thus higher solution hardening is required to avoid fatigue by plastic deformation of the binder phase during thermo-mechanical cycling. The relative magnetic saturation should be kept below 0.75, preferably below 0.65 and most preferably below 0.55.
To combine high toughness and deformation resistance with good edge line quality a material with a high binder phase content combined with a small hard phase grain size is generally required. The conventional way to decrease the grain size in cermets has been to decrease the raw material grain size and increase the N content to prevent grain growth. However, for the alloys of the present invention a high N content alone has not proved sufficient to obtain the desired properties. The solution has instead turned out to be a combination of a relatively high N content (N/(C+N) in the range 25-50 at % (at %=atomic %), preferably 30-45 at %, and most preferably 35-40 at %) and a Ta content of at least 2 at %, preferably in the range 4-7 at % and most preferably 4-5 at %. For alloys with Co-based binder, the grain size is best determined by measuring the coercive force, Hc. For the alloys of the present invention the coercive force should be above 12 kA/m, preferably above 13 kA/m and most preferably 14-17 kA/m.
Within reasonable limits, the amount of W added to the material does not directly influence the properties. However, the W content should be above 2 at %, preferably in the range 3-8 at % to avoid an unacceptably high porosity level.
The material described above is extremely reactive during sintering. Uncontrolled sintering parameters, e.g. conventional vacuum sintering, may lead to several undesirable affect. Examples of such effects are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ti(C,N)-(Ti,Ta,W)(C,N)-Co alloy for general finishing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ti(C,N)-(Ti,Ta,W)(C,N)-Co alloy for general finishing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ti(C,N)-(Ti,Ta,W)(C,N)-Co alloy for general finishing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2972880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.