Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
2001-08-01
2002-11-26
Talbott, David L. (Department: 2827)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C174S255000, C174S262000, C174S264000, C174S265000, C174S266000, C361S785000, C361S794000, C361S795000, C439S065000
Reexamination Certificate
active
06486414
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a printed circuit board, more specifically to a through-hole structure positioned in the printed circuit board for connecting a high-frequency connector to the printed circuit board.
BACKGROUND OF THE INVENTION
In some cases, a connector is mounted directly onto a printed circuit board for various purposes such as signal input from an external device and as power supply to the printed circuit board. In such a case, as the frequency of the signal from the external device becomes higher, a problem of impedance mismatch may occur. Such impedance mismatch lowers integrity of the signal, or in some cases, makes it impossible for the signal to transmit. Accordingly, it is necessary that any impedance mismatch between a connection portion of the printed circuit board and the connector, particularly at high-frequency, be substantially eliminated.
Heretofore, impedance matching has been performed by providing through-hole conductors around a signal through hole, where the through-hole conductors are extending parallel to the signal through hole side walls. Since the through-hole conductors are arranged in the vicinity of a signal path and the distance between the through holes can be small, electrostatic capacitance in the signal path exists. Such existence of electrostatic capacitance in the signal path directly results in an increase of stray capacitance. When a high-frequency connector is connected to the connector portion of the printed circuit board to supply the signal thereto, through-hole conductors arranged around a signal through-hole become less effective at controlling impedance mismatching. Moreover, demand for high density packaging on the printed circuit board has increased more and more in recent years. Therefore, in many cases, a power supply circuit conductor is also provided in the vicinity of the through hole for transmitting a high-frequency signal therethrough. A through-hole structure and a printed circuit board, which are capable of adjusting the impedance in the connection portion of the board having a high-frequency connector connected thereto, have been required.
It is believed that a through-hole structure in a connection portion of a printed circuit board, which does not increase stray capacitance due to the increase of the electrostatic capacitance in the signal path, and is capable of readily and effectively adjusting the impedance in the connection portion of the printed circuit board when a high-frequency connector is utilized to transmit a high-frequency signal therethrough, would represent a significant advancement in the art.
SUMMARY OF THE INVENTION
Accordingly, it is the object of this invention to provide a new and unique through-hole structure.
Another object of this invention is to provide a through-hole structure as part of a connection portion of a printed circuit board.
The invention significantly reduces interference and noise in the connection portion of a printed circuit board when the connection portion is connected to a high frequency connector.
According to one aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for supplying a signal to the through-hole structure, a second through-hole positioned in the connector portion of the dielectric substrate relative to the first through-hole, the second through-hole including the conductive layer therein for supplying electrical power to the through-hole structure, and at least one dielectric constant adjusting portion positioned in the connector portion of the dielectric substrate relative to the first and second through-holes to adjust the dielectric constant of the connector portion of the dielectric substrate.
According to another aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for supplying a signal to the through-hole structure, a second through-hole positioned in the connector portion of the dielectric substrate relative to the first through-hole, the second through-hole including the conductive layer therein for supplying electrical power to the through-hole structure, and at least one dielectric constant adjusting portion positioned in the connector portion of the dielectric substrate between the first and second through-holes to adjust the dielectric constant of the connector portion of the dielectric substrate.
According to yet another aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for supplying a signal to the through-hole structure, a second through-hole positioned in the connector portion of the dielectric substrate relative to the first through-hole, the second through-hole including the conductive layer therein for supplying electrical power to the through-hole structure, and at least one dielectric constant adjusting through-hole positioned in the connector portion of the dielectric substrate relative to the first and second through-holes to adjust the dielectric constant of the connector portion of the dielectric substrate.
According to still yet another aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for supplying a signal to the through-hole structure, a second through-hole positioned in the connector portion of the dielectric substrate relative to the first through-hole, the second through-hole including the conductive layer therein for supplying electrical power to the through-hole structure, and at least one dielectric constant adjusting through-hole positioned in the connector portion of the dielectric substrate between the first and second through-holes to adjust the dielectric constant of the connector portion of the dielectric substrate.
According to another aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for supplying a signal to the through-hole structure, a plurality of second through-holes positioned in the connector portion of the dielectric substrate relative to the first through-hole, each of the plurality of second through-holes including the conductive layer therein for supplying electrical power to the through-hole structure, and a plurality of dielectric constant adjusting portions centrosymmetrically positioned around the first though hole in the connector portion of the dielectric substrate relative to the plurality of the second through-holes to adjust the dielectric constant of the connector portion of the dielectric substrate.
According to yet another aspect of the invention, there is provided a through-hole structure comprising a dielectric substrate having a connector portion therein, the connector portion having a dielectric constant, a first through-hole positioned in the connector portion of the dielectric substrate, the first through-hole including a conductive layer therein for su
Kobayashi Kaoru
Mori Hiroyuki
Yamanaka Kimihiro
Fraley, Esq. Lawrence R.
Patel I B
Scully Scott Murphy & Presser
Talbott David L.
LandOfFree
Through-hole structure and printed circuit board including... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Through-hole structure and printed circuit board including..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Through-hole structure and printed circuit board including... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2979941