Three stage sewage treatment system

Liquid purification or separation – Recirculation – Serially connected distinct treating or storage units

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S195400, C210S202000, C210S256000, C210S259000, C210S532200

Reexamination Certificate

active

06200472

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the treatment of sewage. More particularly, this invention relates to the treatment of sewage discharged from houses and other buildings which are not connected to a municipal sewer system such that, after the sewage has passed through the three stage sewage treatment system (TSSTS), it has been cleaned to a level acceptable for discharge into the environment so that it will not contaminate the ground water. Thus, the TSSTS provides an alternative to septic systems for buildings constructed outside of a local municipal sewer system.
There are several versions of the conventional sewage treatment system which use aerobic microorganisms to break down sewage. One such device is seen in U.S. Pat. No. 5,549,818. This conventional sewage treatment device consists of a cylindrical tank which encompasses a funnel-shaped clarifier. Thus, the cylindrical tank is divided into an outer chamber, between the outer wall of the tank and the clarifier, and an inner chamber, inside the clarifier. Air is introduced into the outer chamber by multiple air droplines, which are connected to an air compressor and which pump air bubbles into the sewage in the outer chamber. Sewage flows into the outer chamber where it comes in contact with the air bubbles. The introduction of air facilitates the breakdown and digestion of the sewage by aerobic microorganisms present in the sewage. The aerated sewage then proceeds into the clarifier through an opening at the bottom of the funnel-shaped clarifier. Inside the clarifier is a quiescent zone. This area of calm in the inner chamber of the device allows for settling to occur, with the solids falling back out of the clarifier and collecting on the bottom of the treatment tank. Accordingly, the waste water becomes cleaner as it progresses upward in the funnel-shaped clarifier, continuing to allow gravity to separate the solids from the water. So, by the time the sewage has progressed up through the clarifier, it has been substantially cleaned. This treated effluent exits near the top of the clarifier and is discharged.
The Three Stage Sewage Treatment System (TSSTS) employs a more comprehensive three step process to clean sewage. Thus, it is able to treat sewage more thoroughly than conventional devices while still offering a single, simple-to-install unit for this complete processing of sewage, The sewage first enters a pretreatment area. It then proceeds to an aeration chamber followed by a settling chamber in a clarifier. Finally, the sewage enters a post-treatment area, where it is chlorinated before discharge. Through this multi-step process, the TSSTS produces a cleaner effluent.
SUMMARY OF THE INVENTION
The TSSTS is a single device utilizing a three stage procedure for treating sewage. The TSSTS is comprised of a pre-treatment tank, which holds the sewage for a time while allowing the anaerobic microorganisms in the sewage to begin initially breaking down the sewage, an aerobic tank, in which the sewage is aerated to allow aerobic microorganisms to further break down the sewage and then clarified as the heavier particles separate from the effluent, and a post-treatment tank, which chlorinates the effluent before discharge. All three tanks are joined into a single unit, allowing for convenient installation.
The raw sewage enters the pre-treatment tank first to allow the anaerobic microorganisms in the sewage to begin the initial processing of the sewage. The pre-treatment tank has side walls and a bottom, and the top is sealed by a removable cover. Anaerobic microorganisms feed on the sewage, breaking it down in the process. The pre-treatment tank also serves to screen out objects which would hamper the functioning of the aerobic tank. As the pretreatment tank continues to accept raw sewage, sewage is forced out of the pre-treatment tank through the outlet conduit. Near the top of the pre-treatment tank is a overflow conduit which leads to the aerobic tank. Gravity will segregate the sewage in the pre-treatment tank, such that light solids will float upon the surface while heavy solids will settle to the bottom. In between these two zones is a zone of effluent which is relatively free of particles. The overflow conduit drains sewage from this particle-free zone beneath the surface level, thereby screening out floating solids and heavy solids. An effluent filter, which is not required, may cover the opening of the overflow conduit to further prevent large particles from passing through the overflow conduit. In this way, the overflow conduit traps the large solid contaminants so that they do not enter the aerobic tank and clog the device. After the raw sewage has been gravity separated and processed by anaerobic microorganisms, it flows into the aerobic tank for the next stage of the treatment process.
The aerobic tank is a vessel with sidewalls and a bottom, and the top is sealed by a removable cover. The tank encompasses a funnel-shaped clarifier. The clarifier is wide near the top of the aerobic tank and narrows towards the bottom of the tank, and there is an opening in the bottom of the clarifier. There are many methods which could be used to hold the clarifier in place inside the aerobic tank. The TSSTS uses a clarifier design with a lip that overhangs the sidewalls of the aerobic tank. Thus, the clarifier actually hangs down from the top of the sidewalls. The lip of the clarifier is held firmly in place between the top of the aerobic tank sidewalls and the cover for the aerobic tank. The funnel-shaped main body of the clarifier is offset slightly down from the top of the tank, so that there is a gap between the top of the clarifier and the top of the aerobic tank. This offset provides clearance for the air feed conduit. The clarifier hangs down inside the vessel, not reaching down to the bottom of the aerobic tank but leaving an area of clearance between the bottom of the clarifier and the bottom of the aerobic tank. Thus, the aerobic tank is divided into two chambers by the clarifier. Between the outer sidewalls of the aerobic tank and the clarifier is the outer chamber, where aeration of the sewage occurs, while the volume inside the clarifier is the inner chamber of the aerobic tank, where solid particles are gravity separated from the effluent.
Running down into the outer chamber of the aerobic tank from the top of the aerobic tank are droplines. These droplines are typically distributed in the outer chamber such that they provide for aeration throughout the upper part of the outer chamber, above the bottom of the clarifier. These droplines are conduits which are typically capped at the bottom end and which have small holes for emitting air. The top end of these droplines are connected to an air feed conduit which directs air from the compressor, so that the droplines will emit air bubbles into the outer chamber, aerating the sewage passing through the outer chamber of the aerobic tank. The inner chamber, located inside the clarifier, is screened from the aerating effect of the droplines by the walls of the clarifier, so this inner chamber is a non-turbulent, quiescent zone. Near the top of the inner chamber with its opening located inside the clarifier is an outlet drain leading to the post-treatment tank. Typically, the outlet drain is comprised of an outlet conduit, extending from the clarifier of the aerobic tank to the post-treatment tank, and a T-Baffle, which controls the flow of effluent into the outlet conduit. The T-Baffle is comprised of two T-joints. The first T-joint connects to the outlet conduit and extend upwards and downwards from the outlet conduit. The second T-joint connects to the bottom of the first T-joint, so that its two openings extend out perpendicularly from the openings of the first T-joint. The uppermost opening of the first T-joint extends above the fluid level within the clarifier, acting as a vent for the T-Baffle. Both of the openings for the second T-joint are beneath the fluid level within the clarifier. Thus, the effluent enters the T-Baffle through the two

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three stage sewage treatment system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three stage sewage treatment system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three stage sewage treatment system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2516972

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.