Three-phase high-current switchgear apparatus with twinned...

Electricity: magnetically operated switches – magnets – and electr – Electromagnetically actuated switches – Automatic circuit-interrupting devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C335S006000, C361S093100, C361S093600, C361S634000, C361S636000

Reexamination Certificate

active

06337613

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to three-phase, high-current switchgear apparatuses, with or without neutral, comprising pole compartments connected in parallel.
The document EP 0,320,412 describes a three-phase, high-current switchgear apparatus, in this case a circuit breaker, comprising two adjacent pole compartments per pole, and two adjacent pole compartments for the neutral. Each pole compartment comprises two separable contacts each connected to a contact strip. The pole compartments of the same phase are twinned by electrically connecting the contact strips two by two by means of a connecting strip. Each pair of twinned poles thus constitutes a current loop formed by the two connecting strips and the conductors of the two pole compartments. Each phase is connected to a busbar at the level of its connecting strips.
It so happens that when the circuit breaker is closed, in balanced three-phase AC operation, the mutual electromagnetic interaction between the phase currents gives rise to a non-homogenous distribution of the currents in the bars and in the conducting parts of the circuit breaker. The electromagnetic field generated by each of the conductors influences the current distribution in the other conductors. Globally, a non-homogeneous temperature rise of certain conducting parts is then observed, known by the name of proximity effect.
On account of the fact that the electromotive forces induced by flow of the current in the different branches of circuit increase with the circuit breaker rating, the heterogeneity is all the greater the higher the circuit breaker rating. For a rated phase current of 6300 A for example, a distribution of the rms value of the current of about ⅓, ⅔ can be observed between the two compartments of one and the same phase, so that the current intensities or temperatures reached at certain points may exceed the limits fixed by the standards.
To stabilize the current distribution between the two branches corresponding to two twinned poles of the same phase of a low-voltage power circuit breaker, it has already been proposed in the document FR 2,063,078 to make the conductors of the two branches cross, so as to superpose the two portions of conductors in which currents are flowing in opposite directions, and to incorporate a magnetic circuit entwining the two superposed conductors. From the indications given by this document, it is apparent that such a device compensates the differences of current intensity between the two branches of one and the same phase generated by the electrical resistance differences, for example at the level of the contact resistances of the contacts of each of the branches. Knowing that in practice the differences between contact resistances of two poles are about 5%, this device proves effective for small current intensity variations between the two compartments of the same phase. However, the device proves difficult to implement when the unbalance between phases becomes great or when the rating of the apparatus increases. In particular, crossing of the conductors in a single magnetic circuit, although it does not cause any problem for medium intensity currents of about 630 A, can no longer be applied for very high current apparatuses, in excess of 4000 A in particular, for obvious reasons of dimensions. And yet it is precisely on very high current apparatuses that the effect of the mutual induced electromotive forces between branches of the electrical circuit internal to the apparatus becomes critical. The teachings of the document FR 2,063,078 therefore do not enable a solution to be provided to the specific problem arising from the proximity effect between phases described previously.
Another method for stabilizing the current distribution between the two branches corresponding to two twinned poles of any one phase of a low-voltage power circuit breaker would consist in arranging the two poles of each phase in non-contiguous manner, for example so that the two poles of each phase are separated from one another by one of the poles of each of the other two phases. If we number the six pole compartments from one side of the circuit breaker to the other from 1 to 6, we would thus have: poles 1 and 4 for a first phase, poles
2
and
5
for a second phase, and poles
3
and
6
for the third phase. Such an arrangement does however give rise to large dimensions at the level of the busbars of the different phases and of the bridge connections between poles of the same phase. Moreover, it prevents any interaction device between pole compartments of the same phase: it makes it impossible in particular to provide a communicating orifice between the two pole compartments of the same phase, as described for example in the document FR 2,778,788, an orifice which enables an adequate distribution of the breaking energy to be ensured in case of opening of the apparatus on a fault.
OBJECT OF THE INVENTION
The object of the invention is therefore to improve, or even optimize, distribution of the electrical current and temperatures between the twinned poles composing the phases of a three-phase switchgear apparatus with contiguous twinned poles, limiting the additional cost arising from the arrangements adopted as well as the increase of the dimensions of the apparatus.
According to the invention, this objective is achieved by means of a three-phase electrical switchgear apparatus comprising a case made of insulating material comprising at least six pole compartments arranged side by side, each phase comprising:
two adjacent poles, each pole comprising
one of said pole compartments and
a pair of separable contact means formed by a first and a second contact means;
a first bridge connection electrically connecting the first contact means of the two adjacent poles of said phase;
a second bridge connection electrically connecting the second contact means of the two adjacent poles of said phase;
one of the three phases constituting a center phase bounded on each side by the other two phases which each form a side phase, one of the two poles of each side phase forming an inner pole whose pole compartment is adjacent to one of the pole compartments of the center phase,
and wherein:
each of said inner pole compartments of the two side phases comprises a magnetic compensation circuit arranged between one of the two bridge connections of said phase and the pair of contact means of said inner pole compartment,
the other two pole compartments of the two side phases are not provided with magnetic compensation circuits.
Indeed, in balanced three-phase operation, the electromagnetic interaction between the phases located in the same plane has the effect of increasing the intensity of the current flowing in the inner poles of the side phases to the detriment of the current flowing in the outer poles of these same phases. It is therefore also the inner poles of the side phases which are the most affected by temperature increases by Joule effect. According to the invention, by arranging the magnetic circuits judiciously on the inner branches of the side phases, an impedance is introduced into the circuit which makes the current decrease in targeted manner in the pole compartment where the magnetic circuit is situated. The desired result is thus achieved with minimum additional cost.
The fact that the bridge connections form part of the apparatus enables the influence of the parts of the circuit situated outside the apparatus, in particular the influence of the supply busbar, to be eliminated. In other words, the current loops of each phase formed by the conductors of the two pole compartments and the source-side and load-side bridge connections are defined at the time the apparatus is designed and do not depend on the on- site assembly. It is therefore possible to calibrate the magnetic circuit judiciously so as to obtain the required compensation for given power supply conditions. The compensation obtained is then independent of the composition of arrangement of the source-side and load-side circuits and in particu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three-phase high-current switchgear apparatus with twinned... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three-phase high-current switchgear apparatus with twinned..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-phase high-current switchgear apparatus with twinned... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2842157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.