Three-dimensional reconstruction of intrabody organs

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S417000, C600S420000, C600S481000, C600S513000, C606S130000, 36, 36

Reexamination Certificate

active

06226542

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to systems and methods for mapping, and specifically to methods of mapping of intrabody organs.
BACKGROUND OF THE INVENTION
Cardiac mapping is used to locate aberrant electrical pathways and currents within the heart, as well as mechanical and other aspects of cardiac activity. Various methods and devices have been described for mapping the heart. Such methods and device are described, for example, in U.S. Pat. Nos. 5,471,982 and 5,391,199 and in PCT patent publications WO94/06349, WO96/05768 and WO97/24981. U.S. Pat. No. 5,391,199, for example, describes a catheter including both electrodes for sensing cardiac electrical activity and miniature coils for determining the position of the catheter relative to an externally-applied magnetic field. Using this catheter a cardiologist may collect a set of sampled points within a short period of time, by determining the electrical activity at a plurality of locations and determining the spatial coordinates of the locations.
In order to allow the surgeon to appreciate the determined data, a map, preferably a three dimensional (3D) map, including the sampled points is produced. U.S. Pat. No. 5,391,199 suggests superimposing the map on an image of the heart. The positions of the locations are determined with respect to a frame of reference of the image. However, it is not always desirable to acquire an image, nor is it generally possible to acquire an image in which the positions of the locations can be found with sufficient accuracy.
Various methods are known in the art for reconstructing a 3D map of a cavity or volume using the known position coordinates of a plurality of locations on the surface of the cavity or volume. Some methods include triangulation, in which the map is formed of a plurality of triangles which connect the sampled points. In some cases a convex hull or an alpha-hull of the points is constructed to form the mesh, and thereafter the constructed mesh is shrunk down to fit on the sampled points within the hull. Triangulation methods do not provide a smooth surface and therefore require additional stages of smoothing.
Another method which has been suggested is forming a bounding ellipsoid which encloses the sampled points. The sampled points are projected onto the ellipsoid, and the projected points are connected by a triangulation method. The triangles are thereafter moved with the sampled points back to their original locations, forming a crude piecewise linear approximation of the sampled surface. However, this method may reconstruct only surfaces which have a star shape, i.e., a straight line connecting a center of the reconstructed mesh to any point on the surface does not intersect the surface. In most cases heart chambers do not have a star shape.
In addition, reconstruction methods known in the art require a relatively large number of sampled locations to achieve a suitable reconstructed map. These methods were developed, for example, to work with CT and MRI imaging systems which provide large numbers of points, and therefore generally work properly only on large numbers of points. In contrast, determining the data at the locations using an invasive catheter is a time-consuming process which should be kept as short as possible, especially when dealing with a human heart. Therefore, reconstruction methods which require a large number of determined locations are not suitable.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved method for creating a map of a 3D volume or cavity, based on the positions of points on a surface of the volume or cavity.
It is an object of some aspects of the present invention to provide methods and apparatus for generating a map of a volume in the human body from a plurality of sampled points, regardless of the shape of the volume.
It is another object of some aspects of the present invention to provide a simple, rapid method for reconstructing a 3D map of a volume in the human body from a plurality of sampled points , preferably using fewer sampled points than is feasible using methods known the art.
It is another object of preferred embodiments of the present invention to provide a method for reconstructing a 3D map of a volume in the human body from a plurality of sampled points, assuming any topological relationship between the points.
It is another object of some aspects of the present invention to provide a simple method for reconstructing a 3D map of a volume in movement.
It is another object of some aspects of the present invention to provide a simple method for reconstructing a 3D map of a volume in the human body from a plurality of sampled points independent of the sampling order.
It is another object of some aspects of the present invention to provide a quick method for reconstructing a 3D map of a volume in the human body from a plurality of sampled points, such that the method may be used in interactive procedures.
It is another object of some aspects of the present invention to provide a method for reconstructing a smooth 3D map of a volume in the human body from a plurality of sampled points.
In preferred embodiments of the present invention, a processor reconstructs a 3D map of a volume or cavity in a patient's body (hereinafter referred to as the volume), from a plurality of sampled points on the volume whose position coordinates have been determined. In contrast to prior art reconstruction methods in which a large number of sampled points are used, the preferred embodiments of the present invention are directed to reconstruction of a surface based on a limited number of sampled points. The number of sampled points is generally less than 200 points and may be less than 50 points. Preferably, ten to twenty sampled points are sufficient in order to perform a preliminary reconstruction of the surface to a satisfactory quality.
An initial, generally arbitrary, closed 3D curved surface (also referred to herein for brevity as a curve) is defined in a reconstruction space in the volume of the sampled points. The closed curve is rougly adjusted to a shape which resembles a reconstruction of the sampled points. Thereafter, a flexible matching stage is preferably repeatedly performed once or more to bring the closed curve to accurately resemble the shape of the actual volume being reconstructed. Preferably, the 3D surface is rendered to a video display or other screen for viewing by a physician or other user of the map.
In preferred embodiments of the present invention, the initial closed curved surface encompasses substantially all the sampled points or is interior to substantially all the sampled points. However, it is noted that any curve in the vicinity of the sampled points is suitable. Preferably, the closed 3D curved surface comprises an ellipsoid, or any other simple closed curve. Alternatively, a non-closed curve may be used, for example, when it is desired to reconstruct a single wall rather than the entire volume.
A grid of a desired density is defined on the curve, and adjustment of the curve is performed by adjusting the grid points. The grid preferably divides the curved surface into quadrilaterals or any other polygons such that the grid evenly defines points on the curve. Preferably, the grid density is sufficient such that there are generally more grid points than sampled points in any arbitrary vicinity. Further preferably, the grid density is adjustable according to a desired compromise between reconstruction accuracy and speed.
In some preferred embodiments of the present invention, external information is used to choose an initial closed curve which is more closely related to the reconstructed volume, for example, using the image of the volume, as described above. Thus, the reconstruction procedure may produce a more accurate reconstruction in less time. Alternatively or additionally, a database of closed curves suitable for various volumes of the body is stored in a memory, and the curve to be used is chosen according to the specific procedure. In a fu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three-dimensional reconstruction of intrabody organs does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three-dimensional reconstruction of intrabody organs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-dimensional reconstruction of intrabody organs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2540137

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.