Three dimensional in-filling vaso-occlusive coils

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06231586

ABSTRACT:

FIELD OF THE INVENTION
This invention is an implantable vaso-occlusive device. It is a complex, helically wound coil comprised of a primary helically wound coil which is then wound into a specific secondary shape. The final shape upon deployment is in the approximate shape of an anatomical cavity. Upon deployment, the device first fills the periphery of the cavity and then continues to infill the center. The device is a self-forming shape made from a pre-formed linear helically wound. Fibers may be introduced onto the device and affixed to the pre-formed linear member. The constituent member may be also be covered with a fibrous braid. The device is typically introduced through a catheter. The device is passed axially through the catheter sheath and assumes its form upon exiting the catheter without further action. The invention also includes methods of winding the vaso-occlusive device into appropriately shaped forms and annealing them.
BACKGROUND OF THE INVENTION
Vaso-occlusion devices are surgical implements or implants that are placed within the vasculature of the human body, typically via a catheter, either to block the flow of blood through a vessel making up that portion of the vasculature through the formation of an embolus or to form such an embolus within an aneurysm stemming from the vessel. One widely used vaso-occlusive device is a helical wire coil having windings which may be dimensioned to engage the walls of the vessels. Other less stiff helically coiled devices have been described, as well as those involving woven braids.
For instance, U.S. Pat. No. 4,994,069, to Ritchart et al., describes a vaso-occlusive coil that assumes a linear helical configuration when stretched and a folded, convoluted configuration when relaxed. The stretched condition is used in placing the coil at the desired site (by its passage through the catheter) and the coil assumes a relaxed configuration—which is better suited to occlude the vessel—once the device is so placed. Ritchart et al. describes a variety of shapes. The secondary shapes of the disclosed coils include “flower” shapes and double vortices. A random shape is described, as well.
Vaso-occlusive coils having attached fibrous elements in a variety of secondary shapes are shown in U.S. Pat. No. 5,304,194, to Chee et al. Chee et al. describes a helically wound device having a secondary shape in which the fibrous elements extend in a sinusoidal fashion down the length of the coil. These coils, as with Ritchart et al., are produced in such a way that they will pass through the lumen of a catheter in a generally straight configuration and, when released from the catheter, form a relaxed or folded shape in the lumen or cavity chosen within the human body. The fibrous elements shown in Chee et al. enhance the ability of the coil to fill space within the vasculature and to facilitate formation of embolus and subsequent allied tissue.
There are a variety of ways of discharging shaped coils and linear coils into the human vasculature. In addition to those patents which apparently describe only the physical pushing of a coil out into the vasculature (e.g., Ritchart et al.), there are a number of other ways to release the coil at a specifically chosen time and site. U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable embolic device.
A variety of mechanically detachable devices are also known. For instance, U.S. Pat. No. 5,234,437, to Sepetka, shows a method of unscrewing a helically wound coil from a pusher having interlocking surfaces. U.S. Pat. No. 5,250,071, to Palermo, shows an embolic coil assembly using interlocking clasps mounted both on the pusher and on the embolic coil. U.S. Pat. No. 5,261,916, to Engelson, shows a detachable pusher-vaso-occlusive coil assembly having an interlocking ball and keyway-type coupling. U.S. Pat. No. 5,304,195, to Twyford et al., shows a pusher-vaso-occlusive coil assembly having an affixed, proximally extending wire carrying a ball on its proximal end and a pusher having a similar end. The two ends are interlocked and disengage when expelled from the distal tip of the catheter. U.S. Pat. No. 5,312,415, to Palermo, also shows a method for discharging numerous coils from a single pusher by use of a guidewire which has a section capable of interconnecting with the interior of the helically wound coil. U.S. Pat. No. 5,350,397, to Palermo et al., shows a pusher having a throat at its distal end and a pusher through its axis. The pusher sheath will hold onto the end of an embolic coil and will then be released upon pushing the axially placed pusher wire against the member found on the proximal end of the vaso-occlusive coil.
Vaso-occlusive coils having little or no inherent secondary shape have also been described. For instance, in U.S. patent application Ser. No. 07/978,320, filed Nov. 18, 1992, entitled “Ultrasoft Embolization Coils with Fluid-Like Properties” by Berenstein et al., is found a coil having little or no shape after introduction into the vascular space.
None of these devices are self-forming helical coils which first fill the periphery of a vascular space upon ejection from a delivery catheter.
SUMMARY OF THE INVENTION
This invention is a vaso-occlusive device comprising one or more vaso-occlusive helical coils which are formed by winding a wire into a first helix; the first helix is then wound into a secondary form. The secondary form is one which, when ejected from a delivery catheter, forms a generally spherical shape, filling first the outer periphery of the spherical shape and then the center region. Desirably, the vaso-occlusive device is of a size and shape suitable for fitting snugly within a vascular cavity (e.g., an aneurysm, or perhaps, a fistula). The stiffness of the various parts of the coil may be selected to enhance the utility of the device for specific applications. Fibrous materials may be woven into the member or tied or wrapped onto it.
The device may be made in a variety of ways. Typically, the member is helically wound in a generally linear fashion to form a first or primary winding. After completion of that step, the primary winding is then wound around a first appropriately shaped winding fixture or form and the assembly heat-treated to help it retain its shape after removal from the winding fixture. Auxiliary fibrous materials are then added by weaving, tying, or other suitable permanent attachment methods.
The device is used simply by temporarily straightening the device and introducing it into a suitable catheter, the catheter already having been situated so that its distal opening is within the mouth of the vascular cavity or opening to be filled. The device is then pushed through the catheter and, upon its ejection from the distal end of the catheter into the vascular cavity, assumes its relaxed shape.
The device is typically used in the human vasculature to form emboli but may be used in any site in the human body where an occlusion such as one produced by the inventive device is needed.


REFERENCES:
patent: 3174851 (1965-03-01), Buehler et al.
patent: 3351463 (1967-11-01), Rozner et al.
patent: 3753700 (1973-08-01), Harrison et al.
patent: 4994069 (1991-02-01), Ritchart et al.
patent: 5122136 (1992-06-01), Guglielmi et al.
patent: 5226911 (1993-07-01), Chee et al.
patent: 5234437 (1993-08-01), Sepetka
patent: 5250071 (1993-10-01), Palermo
patent: 5261916 (1993-11-01), Engelson
patent: 5304194 (1994-04-01), Chee et al.
patent: 5304195 (1994-04-01), Twyford, Jr. et al.
patent: 5312415 (1994-05-01), Palermo
patent: 5350397 (1994-09-01), Palermo et al.
patent: 5354295 (1994-10-01), Guglielmi et al.
patent: 5382259 (1995-01-01), Phelps et al.
patent: 5536274 (1996-07-01), Neuss
patent: 5645558 (1997-07-01), Horton
patent: 5690666 (1997-11-01), Berenstein et al.
patent: 5911731 (1999-06-01), Pham et al.
patent: 3 203 410 A1 (1982-11-01), None
patent: WO 92/14408 (1992-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Three dimensional in-filling vaso-occlusive coils does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Three dimensional in-filling vaso-occlusive coils, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three dimensional in-filling vaso-occlusive coils will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2529237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.