Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
1999-12-20
2001-05-08
Seidleck, James J. (Department: 1711)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S267000, C526S213000, C526S216000, C526S348700
Reexamination Certificate
active
06228945
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates to novel three arm star compositions of matter. The present invention more particularly relates to three arm star thermoplastic compositions of matter comprising an aromatic core having multiple arms radiating from the core, each arm having an inner segment of polyisobutylene connected to outer polymeric segments. Methods of preparation, and adhesive and coating compositions comprising the novel three arm star thermoplastic composition of matter are also provided.
BACKGROUND OF THE INVENTION
The synthesis of linear triblock thermoplastic elastomers, such as PMMA-b-PIB-b-PMMA, is widely known. J. P. Kennedy, J. L. Price and K. Koshimura, “Novel Thermoplastic Elastomer Triblocks of Soft Polyisobutylene Mid-Block Connected to Two Hard Stereocomplex Outer-Blocks”,
Macromolecules,
Vol. 24, p. 6567 (1991); J. P. Kennedy and J. L. Price, “Synthesis, Characterization and Physical Properties of Poly(methyl methacrylate-b-isobutylene-b-methyl methacrylate) Triblock Copolymers”, Vandenberg Symposium,
Polym. Mat. Sci. Eng.
Vol. 64, 40-41 (1991); and J. P. Kennedy and J. L. Price, “Poly(methyl methacrylate)-block-Polyisobutylene-block-Poly(methyl methacrylate) Thermoplastic Elastomers: Synthesis, Characterization, and Some Mechanical Properties”, ACS
Symp. Ser. #
496, pages 258-277 (1992).
It is generally recognized, however, that three arm star molecules exhibit more advantageous viscosity properties and mechanical properties than linear triblock molecules.
Recently, the synthesis of various multi-arm radial or star polymers has become of growing practical and theoretical interest to a variety of industries. Such star polymers are seen as useful as surfactants, lubricants, rheology modifiers, viscosity modifiers, adhesives and coatings. In fact, star polymers are now considered by many to be state-of-the-art viscosity modifiers and oil additives, although the potential of some of these star polymers for these applications is still being evaluated and tested.
For example, there has been a growing interest in star polymers consisting of multiple polyisobutylene (PIB) arms. Kennedy et al., U.S. Pat. No. 5,395,885 describes the synthesis of star polymers having multiple PIB arms and polydivinylbenzene (PDVB) cores using cationic, “arm-first”, synthesis techniques. Because the structure of PIB contains no unsaturation, these PIB-based stars are believed to be useful for a variety of applications such as motor oil additives and viscosity index improvers.
In addition, star polymers, formed by the “core first” method, having multiple arms radiating from the core are also disclosed in the prior art. For example, U.S. Pat. No. 5,804,664 to Kennedy et al. discloses star polymers comprising a core component selected from the group consisting of a p-methoxy cumyl group and a calix[n]arene where n=4 to 16; and N number of arms containing at least one segment of polyisobutylene connected to said core component, where N=1 when said core component is said p-methoxy cumyl group and N=n, when said core component is said calix[n]arene. The star polymers of the this reference have only arm emanating from each aromatic ring.
It is desirable in the art to provide thermoplastic elastomer star compositions of matter having improved mechanical and thermal properties. While the preparation of star polymers is known in the art, heretofore, it has not been known to prepare three-arm star compositions of matter comprising an aromatic core and three diblock arms, each arm having inner and outer polymeric segments, wherein the outer segments of each diblock arm are obtained by living radical polymerization.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a three arm star composition of matter having diblock arms radiating from a single aromatic core, each arm having an inner segment of polyisobutylene connected to an outer polymer segment, the outer polymer segment obtained by living radical polymerization.
It is another object of the present invention to provide a method for the preparation of a three arm star composition of matter having diblock arms radiating from a single aromatic core, each arm having an inner segment of polyisobutylene connected to an outer polymer segment, the outer polymer segment obtained by living radical polymerization.
It is another object of the present invention to provide a thermoplastic elastomer comprising a three arm star composition of matter having diblock arms radiating from a single aromatic core, each arm having an inner segment of polyisobutylene connected to an outer polymer segment, the outer polymer segment obtained by living radical polymerization.
It is another object of the present invention to provide adhesive compositions comprising a three arm star composition of matter having diblock arms radiating from a single aromatic core, each arm having an inner segment of polyisobutylene connected to an outer polymer segment, the outer polymer segment obtained by living radical polymerization.
It is another object of the present invention to provide coating compositions comprising a three arm star composition of matter having diblock arms radiating from a single aromatic core, each arm having an inner segment of polyisobutylene connected to an outer polymer segment, the outer polymer segment obtained by living radical polymerization.
These and other objects, together with the advantages thereof over the linear and star thermoplastic compositions of matter and methods of preparation known in the existing art, which shall become apparent from the specification which follows, are accomplished by the invention as hereinafter described and claimed.
The present invention, therefore, provides a thermoplastic elastomer composition of matter comprising a trifunctional aromatic core, said core having three arms radiating therefrom, wherein each of said arms is a diblock copolymer comprising an inner segment of polyisobutylene connected to an outer polymer segment, and wherein the outer segment is obtained by a living radical polymerization process.
In one embodiment, the present invention provides a thermoplastic elastomer composition of matter comprising a trifunctional aromatic core, said core having three arms radiating therefrom, wherein each of said arms is a diblock copolymer comprising an inner segment of polyisobutylene connected to a bromine-capped outer polymer segment, the composition represented by Formula (I):
wherein R
1
-R
6
are the same or different and are selected from the group consisting of hydrogen, methyl, ethyl and phenyl;
wherein A connects the inner segments of polyisobutylene to the outer polymer segments and is selected from
wherein R7 is selected from hydrogen and methyl;
and wherein B is the outer polymer segment of each arm, wherein the outer segment is a polymer selected from the group consisting of polyacrylates, polymethacrylates, polyacrylonitrile, and polymethacrylonitrile.
The present invention also provides a process of preparing a composition of matter comprising the steps of providing a trifunctional aromatic core; reacting the trifunctional aromatic core with isobutylene to form a macroinitiator having three arms, said macroinitiator comprising polyisobutylene functionalized at the terminus of each arm; conducting site transformation at the terminus of each arm to introduce a group capable of initiating living radical polymerization of outer polymer segments at the terminus of each arm; performing living radical polymerization to form the outer polymer segments at the terminus of each arm, thereby producing a three arm star composition of matter having three diblock copolymer arms.
The present invention also provides thermoplastic elastomers comprising a trifunctional aromatic core, said core having three arms radiating therefrom, wherein each of said arms is a diblock copolymer comprising an inner segment of polyisobutylene connected to an outer polymer segment, and wherein the outer polymer se
Fenyvesi Györgyi
Kennedy Joseph P.
Keszler Balazs
Asinovsky Olga
Renner Kenner Greive Bobak Taylor & Weber
Seidleck James J.
The University of Akron
LandOfFree
Three arm star compositions of matter having diblock arms... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Three arm star compositions of matter having diblock arms..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three arm star compositions of matter having diblock arms... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2456834