Thoracentesis device with hyper-sensitive detection mechanism

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S164120

Reexamination Certificate

active

06638251

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a medical device for performing thoracentesis, and more particularly to a thoracentesis device which is used for the removal of fluid from the pleural cavity. More specifically, the present invention relates to a thoracentesis device having a hypersensitive dual spring detection mechanism that greatly reduces the possibility of lung puncture or laceration by the device during thoracentesis.
2. Prior Art
Thoracentesis involves the removal or evacuation of fluid from the pleural cavity between the lungs and the chest wall of a patient who has sustained some kind of trauma to the pleural cavity area. Evacuation of fluid from the pleural cavity is a necessary procedure in order to allow the lungs to expand properly and promote proper convalescence. During a prior art thoracentesis procedure, a user makes an incision through the chest wall and inserts a catheter or other tubular member through the incision and into the pleural cavity. The proximal end of the catheter is then connected to a negative pressure source, e.g. luer tip syringe, and fluid which includes blood, air and other body secretions may be evacuated from the pleural cavity through the catheter by operation of the syringe.
Medical devices used to remove fluid from the pleural cavity during a thoracentesis procedure are well known in the art. A typical prior art device for performing thoracentesis is disclosed in U.S. Pat. No. 4,447,235 to Clarke entitled “Thoracentesis Device” which discloses a flexible catheter having a distal end and a proximal end, a means defining an elongated conduit connected to the proximal end of the catheter and in line therewith, and a hollow needle having a sharpened distal end adapted to penetrate the chest cavity. However, the drawback of the Clarke device is that an inadvertent puncture of an internal body organ by the sharpened distal end of the catheter could possibly occur during insertion of the device through the chest wall since there is no provision for indicating whether the sharp distal end of the device has made contact with the lungs, or other body organ, once the sharpened distal end enters the pleural cavity.
Other medical devices, such as verress-type needle device, used for pneumoperitoneum also require a means for detecting whether the sharpened distal end of the device has made contact with an internal body organ when insufflating the abdominal cavity. A typical Verress-type needle device is disclosed in U.S. Pat. No. 5,256,148 to Smith et al., entitled “Verress Needle with Enhanced Acoustical Means” which shows a single spring-loaded, blunt tipped inner needle slidably contained within a larger diameter piercing outer needle fixedly attached to the handle of the device. In operation, the outer needle of the Verress-type needle device is used to penetrate completely through the abdominal and stomach walls and enter the stomach. As the outer needle penetrates the stomach, the resistance applied against the single spring loaded inner needle causes the inner needle to withdraw inside the conduit of the outer needle such that the sharp end of the outer needle is exposed and extends outwardly beyond the blunt tip inner needle. Once the outer needle completely penetrates the stomach wall and enters the stomach, the resistance against the end of the inner needle applied by the stomach wall is removed so that the single spring force applied to the inner needle causes the blunt tip distal end thereof to move forwardly to a fully extended position beyond the sharp distal end of the outer needle. The Smith et al. device is also provided with a detection means for visually indicating to the user whether the fully extended blunt tip distal end of the inner needle has made contact with an internal body organ after insertion into the stomach. The detection means of the Smith et al. device comprises a single spring arrangement wherein the proximal end of the inner needle disposed inside the housing of the device is spring loaded and operatively connected to a detection means such that a visual indication is given to the user that contact has been made by the blunt tip distal end of the inner needle. The detection means also features two opposite colored bands that are viewed through a window made in the handle of the device. One of the colored bands indicates that the blunt tip distal end of the inner needle is in a fully extended position outwardly beyond the sharp tip of the outer needle, thereby visually indicating to the user that the distal end of the device has not made physical contact with an internal body organ after entry into the stomach. The opposite colored band indicates that the blunt tip distal end of the inner needle has made contact with a body organ and has been retracted into the conduit of the outer needle so that the sharpened tip of the outer needle is exposed. These opposite colored bands provide a visual stimulus to the user as to whether contact is being made by the blunt tip distal end of the device with an internal body organ, thus inadvertent puncture or lacerations of other body organs can be prevented. However, the detection means of the Smith et al. device could be improved even further when applied to thoracentesis or other invasive procedures. The single spring arrangement used to visually indicate the position of the distal end of the device could be improved to provide enhanced detection sensitivity to indicate whether contact has been made with the lungs or other internal body organs.
Therefore, there appears a need in the art for a medical device which includes an indication means that provides improved sensitivity as to the position of the blunt tip distal end of the inner needle relative to the sharpened outer needle of the device.
OBJECTS AND SUMMARY OF THE INVENTION
In brief summary, the present invention overcomes and substantially alleviates the deficiencies in the prior art by providing a thoracentesis device having a hypersensitive dual spring detection mechanism that provides quick and immediate visual indication to the user of when the blunt tip distal end of the inner needle of the device has made contact with a body organ, thereby preventing puncture or laceration of the lung area during thoracentesis. The thoracentesis device of the present invention comprises an outer needle fixedly attached at its proximal end to a handle and a sharp distal end adapted for penetrating the chest wall of a patient. The sharp distal end of the outer needle includes an opening in communication with a first conduit formed along the longitudinal axis of the outer needle. Slidably disposed inside the first conduit is a smaller diameter inner needle having a spring-loaded proximal end slidably engaged inside the handle and a blunt tip distal end which, in its fully extended position, extends a short distance outwardly beyond the sharp distal end of the outer needle. A plurality of radial ports are formed around the blunt tip distal end of the inner needle with each port in communication with a second conduit that extends longitudinally through the inner needle and opens into a cavity formed inside the handle. The second conduit of the inner needle provides a means for evacuating fluid via a fluid pathway established through the second conduit and cavity of the thoracentesis device.
The blunt tip distal end of the inner needle is maintained in its fully extended position due to its operative engagement with a large spring housed in the handle which applies a distal spring force along the longitudinal axis of the inner needle. The inner needle is also operatively engaged with a small spring which applies a smaller proximal spring force in direct opposition to the distal spring force applied by the large spring. The large spring and a small spring form a part of the dual spring detection mechanism of the present invention which provides an immediate visual indication that the blunt tip distal end of the inner needle has made contact with an internal organ, such as the lungs,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thoracentesis device with hyper-sensitive detection mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thoracentesis device with hyper-sensitive detection mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thoracentesis device with hyper-sensitive detection mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.