Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Patent
1999-06-23
2000-09-26
Davis, Zinna Northington
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
514438, 549 65, 549 77, 549 68, 5462804, A61K 3144, A61K 3138, C07D33334, C07D33322, C07D33342
Patent
active
061243248
ABSTRACT:
Novel thiophene-ethyl-thiourea (TET) compounds as inhibitors of reverse transcriptase and effective agents for the treatment of HIV infection, including mutant, drug-sensitive, drug-resistant, and multi-drug resistant strains of HIV.
REFERENCES:
patent: 5593993 (1997-01-01), Morin, Jr. et al.
patent: 5658907 (1997-08-01), Morin, Jr. et al.
patent: 5686428 (1997-11-01), Eriksson et al.
patent: 5714503 (1998-02-01), Morin, Jr. et al.
Bell, et. al., Phenethylthiazolethieourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs, J. Med. Chem., vol. 38, pp. 4929-4936, 1995.
Davies et. al., Condensed Thiophen Ring Systems. Part XIX. Synthesis of 6,7-Dihydrothieno [3,2-c] pyridines by Intramolecular Cyclistion of 2-(2- or 3-Thienyl)ethyl Isothiocyanate, Journal of Chemical Society, Perkin Translations 1, vol. 2, pp. 138-14, 1976.
Cantrell, et. al., Phenethylthiazolythiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs, J. Med. Chem., 39, 4261-4274, 1996.
Gittos et. al., A New Synthesis of Isocyanates, J. C. S. Perkin I, pp. 169-143, 141.
Ahgren, C., et al., 1995, Antimicrob. Agents Chemotherapy, 39, 1329-1335 The PETT Series, a New Class of Potent Nonnucleoside Inhibitors of Human Immunodeficiency Virus Type 1 Reverse Transcriptase.
Bell, F. W., et al., 1995, J. Med. Chem., 38, 4929-4936 Penethylthiazolethiourea (PETT) Compounds, a New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs.
Bosworth, N., et al., 1989, Nature, 341: 167-168 Scintillation proximity assay.
Cantrell, A. S., et al., 1996, J. Med. Chem., 39, 4261-4274 Phenethylthiazolylthiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs.
Das, K. et al., 1996, J. Mol. Biol., 264, 1085-1100 Crystal Structures of 8-Cl and 9-Cl TIBO Complexed with Wild-type HIV-1 RT and 8-Cl TIBO Complexed with the Tyr181Cys HIV-1 RT Drug-resistant Mutant.
Ding, J., 1995, et al., Nat. Struct. Biol., 2, 407-415 Structure of HIV-1 TR/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors.
Erice, A. et al., 1993, Antimicrob. Ag. Chemother., 37, 835 Anti-Human Immunodeficiency Virus Type 1 Activity of an Anti-CD4 Immunoconjugate Containing Pokeweed Antiviral Protein.
Kohlstaedt, L.A. et al., 1992, Science, 256, 1783-1790 Crystal Structure at 3.5 .ANG. Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor.
Mao, C. et al., 1998, Bioorganic & Medicinal Chemistry Letters 8, pp. 2213-2218 Structure-Based Design of N-[2-(1-Piperidinylethyl)]-N'-[2-(5-Bromopyridyl)]-Thiourea and N-2-(1-Piperazinylethyl)-N'-[2-(5-Bromopyridyl)]-Thiourea as Potent Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase.
Pauwels, R. et al., 1990, Nature, 343, 470-474 Potent and selective inhibitionofHIV-1 replication in vitro by a novel series of TIBO derivatives.
Ren, J. et al., 1995, Structure, 3, 915-926 The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design.
Romero, D. L. et al., 1993, J. Med. Chem., 36, 1505-1508 Bis(heteroaryl)piperazine (BHAP) Reverse Transcriptase Inhibitors: Structure-Activity Relationships of Novel Substituted Indole Analogues and the Identification of 1-[(5-Methanesulfonamido-1H-indol-2-yl)-carbonyl]-4-[3-[(1-methylethyl)ami no]-pyridinyl]piperazine Monomethanesulfonate (U-90152S), a Second-Generation Clinical Candidate.
Sahlberg, et al., 1998, Bioorganic & Medicinal Chemistry Letters 8, pp. 1511-1516 Synthesis and Anti-Hiv Activities of Urea-PETT Analogs Belonging to a New Class of Potent Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors.
Sudbeck, E. A. et al., 1998, Antimicrobial Agents and Chemotherapy, 42(12), 3225-33 Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase.
Uckun, F. M. et al., 1998, Antimicrobial Agents and Chemotherapy, 42, 383 TXU (Anti-CD7)-Pokeweed Antiviral Protein as a Potent Inhibitor of Human Immunodeficiency Virus.
Vig, R. et al., 1998, Bioorganic & Medicinal Chemistry, 6:1789-1797 Rational Design and Synthesis of Phenethyl-5-bromopyridyl Thiourea Derivatives as Potent Non-nucleoside Inhibitors of HIV Reverse Transcriptase.
Zhang et al., 1996, Antiviral Chemistry & Chemotherapy, 7(5):221-229 Synergistic inhibition of HIV-1 reverse transcriptase and HIV-1 replication by combining trovirdine with AZT, ddl and ddC in vitro.
Uckun Fatih M.
Ventatachalam Taracad K.
Davis Zinna Northington
Hughes Institute
Robinson Binta
LandOfFree
Thiophene-ethyl thiourea compounds and use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thiophene-ethyl thiourea compounds and use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thiophene-ethyl thiourea compounds and use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2100598