Thin wall closure for use with a container

Receptacles – Closures – Removable closure situated by resilient distortion and...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C220S380000, C220S780000, C206S515000

Reexamination Certificate

active

06685049

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to injection-molded closures, and more particularly to a thin walled, injection-molded closure and container usable with various contents including frozen contents in a container.
BACKGROUND OF THE INVENTION
Many products, including frozen or refrigerated product, are stored in plastic containers having a complementary plastic lid or closure which engages and seals the container and the contents therein. Some of the very cold products are subjected to a −40° F. blast freezing process and then are subjected to a drop in temperature and often are kept at 0° F. in the frozen foods departments of a grocery store or the like. These cold temperatures make the plastic of the closures and containers more brittle and more likely to fail under tests to which the closed containers are subjected, such as drop tests, while the containers are cold and full of the contents. For cold closures being drop tested, the stress is concentrated at sharp corners on the closure, which tends to fail there. Typically, conventional closures or lids are made from polyethylene such as low density polyethylene, linear flow density polyethylene and high density polyethylene plastic. For injection-molded polyethylene closures, the lower limit for the wall thickness is usually above 0.024 inch thick. While the closures made of these materials having thick walls of 0.020 inch and greater performed adequately, for some applications there is a desire to reduce that thickness of the wall and to make the container less costly because of having less plastic therein.
Conflicting with the desire to reduce the wall thickness when using one of the polyethylene plastics in an injection mold closure, is a desire to have a central panel of the closure be flat and planer for printing or staying out of contact with the container contents. That is, when the polyethylene closure panel is molded to be less than 0.020 inch thick, there is a problem maintaining the central panel in a flat horizontal plane for printing or for aesthetic reasons. Although polypropylene plastic as well as polyethylene has been used in the manufacture of injection-molded lids, polypropylene is not generally used in cold applications because the polypropylene plastic has a generally more brittle characteristic at cold temperatures than the polyethylene plastic.
Linear flow polyethylene is commonly used to injection mold closures because it flows adequately within narrow lid cross sections in the mold and has good strength characteristics particularly for low temperature applications of frozen foods or the like. Polypropylene actually has a better melt index in that it flows better in thin cross-section parts than does polyethylene, but polypropylene recrystalizes faster than does polyethylene. Because of these and various other shortcomings of polypropylene, it has not been used in injection mold closure lids having a thin cross section, e.g., of 0.020 inch or less. Polyethylene is more flexible than polypropylene, making it easier to strip closure portions that overlie a portion of the mold steel during a stripping and ejecting of a molded closure from the mold.
Another general shortcoming of polypropylene plastic in its use to manufacture injection-molded lids is that unlike the polyethylene plastic, after molding, polypropylene does not continue to shrink in, resulting in what is called “toe-in” of the bottom of the skirt wall. That is, in polyethylene closures, the outer skirt contracts upon cooling of the injected plastic to form a lesser diameter at the bottom of the skirt to define a toe-in angle, which is the angle between the vertical and the taper of the lid skirt. Toe-in occurs in polyethylene lids and is used advantageously in the nesting and stacking of lids one-on-another. More specifically, one manner of stacking such closures made of polyethylene is to provide an upstanding stacking ring on the top of a closure and a “toe-in” centering engagement between the tapered upper skirt of the upper closure with a portion of the lower closure. Another form of stacking with a conventional polyethylene lid is the use of stacking ribs, which are ribs formed in the peripheral rim portion for engagement with another rim. However, the use of such stacking rings and stacking ribs adds considerably more plastic to these injection-molded, polyethylene closures.
These kinds of containers and closures are used with automatic filling and capping equipment to fill the containers and to place the closures on the filled plastic containers. Automatic closure handling equipment is also used to feed the closures for printing on the plastic closures after they have been molded. The closures are stored for use in such handling equipment in vertical stacks; and it is important that the space between adjacent skirts on adjacent closures be substantially uniform and centered because a pair of mechanical fingers are usually inserted into the space between lower feeding rings on the lower edges of the skirts to remove the lowermost closure from the stack. Therefore, it is important that the adjacent closures in the stack are not askew or tilted with respect to another, resulting in a larger air gap on one side between the skirts, and a smaller or no gap on the opposite side of the closures in the stack. Further, a partial vacuum should not be formed in an air space between adjacent, stacked closures that would cause the closures to stick together and impede the feeding of the closures. The failure of a closure to feed properly can cause production interruption or possibly equipment damage and is to be avoided. Thus, it will be seen that it is important that the closures, when stacked, are level and centered on the stack and have uniform spacing between adjacent feeding rings on the lower ends of the peripheral skirts of the closures.
Another form of closure that is commonly used particularly with dairy products and the like is a thermo-formed closure, which is made from a sheet of plastic such as polyethylene by a die forcing the plastic into the desired plug configuration. A large number of closures are formed simultaneously in the sheet and then the sheets are cut to form individual closures. The thermo-formed closures have their edges later rolled to form a closure rim having a dependent skirt in a secondary operation. Despite efforts trying to maintain close tolerances for thermo-formed closures, it is found that it is difficult to keep the thermo-formed closures precisely shaped and stacked for use in the automatic equipment. The thermo-formed closures are usually less expensive and contain less polyethylene plastic than injected-molded, polyethylene closures. For the same dairy application, the injected-molded, polyethylene lids have some wall portions of about of 0.024 inch thick as well as stacking ribs; while the thermo-formed lids often are only about 0.014 inch thick. Thus, there is a need for a new and improved injection-molded closure which has thinner walls, uses less plastic to compete with thermo-formed closures, which can be stacked and centered easily for use with automatic handling equipment and yet, which has sufficient rigidity to pass the strength drop test and rigidity to keep a central panel substantially flat and planar for printing or the like.
SUMMARY OF THE INVENTION
In accordance with the present invention, an injected, molded plastic closure, particularly for use with cold products, is provided with a thin wall, for example, with good centering and stacking capabilities. This is achieved by the use of a polypropylene injection-molded lid that has a flared, peripheral, depending skirt for stack alignment and centering and has a pair of spaced surfaces for stacking without the use of plastic ribs or an upstanding stacking ring, which use a lot of plastic.
In the illustrated and preferred embodiment of the invention, the thin wall, polypropylene closure has a thickness of less than 0.020 inch while a typical, injection-molded polyethylene closure will have walls with portions of at le

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thin wall closure for use with a container does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thin wall closure for use with a container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thin wall closure for use with a container will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3331099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.