Heat exchange – Intermediate fluent heat exchange material receiving and... – Liquid fluent heat exchange material
Reexamination Certificate
2002-12-23
2004-02-24
Mckinnon, Terrell (Department: 3743)
Heat exchange
Intermediate fluent heat exchange material receiving and...
Liquid fluent heat exchange material
C165S104210, C361S700000, C174S015200
Reexamination Certificate
active
06695040
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a thin planar heat distributor, more particularly, to an ultra thin planar heat dissipation structure of heat pipes.
BACKGROUND OF THE INVENTION
With promotion of electronic components and equipment functions, the working power thereof is getting greater and the size thereof becomes more compact and lighter. Such a development makes a further requirement for the speed and energy of heat dissipation of the electronic components and the electronic apparatuses.
In the heat dissipating application of the electronic equipment, the common heat dissipating modes have a heat pipe installation, a heat dissipating fin installation and a forced-flow fan installation. However, these three heat dissipating modes become a bottleneck of the trend to component power and compact size for modern equipment.
Taking example by the heat dissipating mode of traditional tube-type or loop-type heat pipe installation, it has the advantages of rapid heat conduction and leading the absorbed heat to a certain direction, but it has the problems of difficult arrangement and small heat absorbing area etc. due to the structural characteristics of the heat pipe itself and restrictions on extending and bending. Hence, such a heat dissipating mode for components of high power needs arrangement of more heat pipes, which obviously violates the requirement for compact size of the machine.
Furthermore, taking example by the heat dissipating mode of heat dissipating fin installation, if the heat dissipation fins are installed at the periphery of the electronic equipment, more heat dissipating energy can be provided by means of the mass and surface, but the heat dissipating operation for the heat producing components of high power in machines is less benefited. If the heat dissipation fins are installed directly on the heat producing components, the heat produced by the components can rapidly conducted out, but this heat exchange mechanism is only to release the produced heat directly into the machines and has ill influences on the peripheral electronic components, and the installation of the heat dissipation fins occupying a certain room in the heat producing components is apparently difficult to achieve the requirement for the compact size of the machine.
Still, taking example by the heat dissipating mode of installing the forcing air current fan in the equipment or on the side thereof, an accelerating air current field is produced in the environment of the electronic components so as to rapidly remove the heat in the machine, but the heat produced from the operation of the fan itself becomes an obvious negative factor for the heat dissipation of the machine. Moreover, a much larger space is needed for installing the fan, and a sufficient air current field in the machine is also needed to result in a preferred heat dissipating effect. Apparently, the installation of the fan cannot satisfy the requirement for the compact size of the machine.
Therefore, the industry is eager to find out the ways to rapidly send out the produced heat in the electronic equipment, especially a compact machine, so as to prevent accumulation of the heat energy in the machine, which leads to reduction of the performance of electronic components or even breakdown.
SUMMARY OF THE INVENTION
The primary objective of the present invention is to provide a thin planar heat distributor to obtain the simultaneous effects of rapid heat conduction, heat dissipation and ready arrangement by means of the wide heat absorbing and dissipating faces thereof as well as the extremely thin configuration thereof.
The thin planar heat distributor of this invention includes a channel portion and an overlapping part for sealing the channel portion.
The channel portion can be a foil-like plate which has a top channel surface and a corresponding outer face. A plurality of fluid-conveying channels and vapor-diffusing channels in a predetermined radiation-and-interval arrangement are formed by a manufacturing manner on the top channel surface of the channel portion. Corresponding capillary structures are set in each fluid-conveying channel and the intersection of the fluid-conveying channels in the predetermined radiation-and-interval arrangement of this invention is the main heat absorption location of the thin planar heat distributor.
The top channel surface of the channel portion is sealed by the overlapping part so that the fluid-conveying channels and the vapor-diffusing channels on the channel portion form together to be a closed radiative channel network structure.
In this invention, a certain quantity of volatile fluid is added in the closed channel network structure. When a heat producing component is set at the heat absorption location of the thin planar heat distributor, the heat produced by the heat producing component is absorbed by the channel portion through heat conduction. The absorbed heat evaporates the fluid in the closed channel network structure to form a vapor, and the vapor is transported away from the heat absorption location through the radiative vapor-diffusing channels. The vapor far away from the heat absorption location can be heat exchanged with the surroundings through the channel portion or the overlapping part to release the heat, and the metal materials of the portion of the non-fluid-conveying channels and the non-vapor-diffusing channels can increase the effect on heat dissipation. Thus, the vapor can be condensed to form a liquid. The liquid is transported back to the original heat absorption location by means of the capillary structures in the fluid-conveying channels to carry out another heat exchange circulation.
In one of the examples of this invention, an indenting and protruding structure is further formed on the outer face of the channel portion so as to broaden the heat exchange area of the outer face. Preferably, the surface of the indenting and protruding structure can be roughened.
In one of the examples of this invention, an indenting and protruding structure is further formed on the outer face of the channel portion so as to broaden the heat exchange area of the outer face. Preferably, the surface of the indenting and protruding structure can be roughened.
In one of the examples of this invention, the top channel surface of the thin planar heat distributor can also be a structure treated by roughening so as to broaden the fluid contacting area on the top channel surface.
In one of the examples of this invention, a capillary structure block can be accumulated at the heat absorption location of the thin planar heat distributor to construct a fluid concentration region of the fluid-conveying channels.
In this invention, the channel portion of the thin planar heat distributor can be fabricated by etching, electroplating, punching, casting, cutting, printing or other methods suitable for forming channels on a thin plate.
In this invention, the channel portion of the thin planar heat distributor can be a copper foil, an aluminum foil or other heat conducting thin sheet. The overlapping part can be a copper foil, an aluminum foil, a metallic sheet, a housing sheet, or other planar structures being able to seal the top channel surface of the channel portion.
In this invention, the capillary structure in the fluid-conveying channels of the channel portion of the thin planar heat distributor can be a sintering article of metallic powders, a ceramic water-absorbing article or other porous materials being able to provide a capillary transporting function.
In one of the examples of this invention, the predetermined radiation-and-interval arrangement of the thin planar heat distributor for constructing the fluid-conveying channels and the vapor-diffusing channels includes at least one radiative network structure. Each of the radiative network structures further includes corresponding fluid-conveying channels and vapor-diffusing channels. The intersection in each radiative network structure is a heat absorbing location. Preferably, each of the radiative network structures is a
Ho Kwun-Yao
Kung Moriss
Mckinnon Terrell
Troxell Law Office PLLC
Via Technologies Inc.
LandOfFree
Thin planar heat distributor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thin planar heat distributor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thin planar heat distributor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3352727