Thin film transistor for supplying power to element to be...

Computer graphics processing and selective visual display system – Display driving control circuitry – Physically integral with display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S059000, C257S350000

Reexamination Certificate

active

06798405

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electroluminescent display device, and in particular, to transistors constructing the circuit structure in the pixel section of an electroluminescent display device.
2. Description of the Related Art
An electroluminescence (hereinafter referred to as EL) display device which uses an EL element which is a self-illuminating element as an illumination element in each pixel has attracted a strong interest as an alternative display device for a display device such as a liquid crystal display device (LCD) and a CRT because the EL display device has advantages such as thin width and low power consumption, in addition to the advantage of being self-illuminating. Such an EL display device has thus been researched.
In particular, there is a high expectation for an active matrix type EL display device in which a switching element such as, for example, a thin film transistor for individually controlling an EL element is provided for each pixel and EL elements are controlled for each pixel, as a high resolution display device.
FIG. 1
shows a circuit structure for one pixel in an active matrix type EL display device having m rows and n columns. In the EL display device, a plurality of gate lines GL extend on a substrate in the row direction and a plurality of data lines DL and power supply lines VL extend on the substrate in the column direction. Each pixel has an organic EL element
50
, a switching TFT (first TFT)
10
, an EL element driving TFT (second TFT)
20
, and a storage capacitor Cs.
The first TFT
10
is connected to the gate line GL and data line DL, and is turned on by receiving a gate signal (selection signal) on its gate electrode. A data signal which is being supplied on the data line DL at this point is then held in the storage capacitor Cs connected between the first TFT
10
and the second TFT
20
. A voltage corresponding to the data signal is supplied to the gate electrode of the second TFT
20
via the first TFT
10
. The second TFT
20
then supplies a current, corresponding to the voltage value, from the power supply line VL to the organic EL element
50
. In this manner, the organic EL element in each pixel is illuminated at a brightness based on the data signal, and a desired image is displayed.
The organic EL element is a current-driven element which is illuminated by supplying a current to an organic emissive layer provided between a cathode and an anode. The data signal output onto the data line DL, on the other hand, is a voltage signal with an amplitude corresponding to the display data. Thus, conventionally, in order to accurately illuminate the organic EL element by such a data signal, in an organic EL display device, a first TFT
10
and a second TFT
20
are provided in each pixel.
The display quality and reliability of the organic EL display devices described above remain insufficient, and the characteristic variations in the first and second TFTs
10
and
20
must be dissolved. In particular, reduction in characteristic variation in the second TFT
20
for controlling the amount of current supplied from the power supply line VL to the organic EL element
50
is desired, because such variation directly causes variation in the illumination brightness.
Moreover, it is preferable to construct the first and second TFTs
10
and
20
from a polycrystalline silicon TFT which has quick operation speed and which can be driven by a low voltage. In order to obtain a polycrystalline silicon, an amorphous silicon is polycrystallized by laser annealing. Because of various reasons such as, for example, energy variation in the irradiating laser at the irradiation surface, the grain size of the polycrystalline silicon is not uniform. When grain size is not uniform, in particular around the TFT channel, there is a problem in that the on-current characteristic or the like of the TFT may also vary.
SUMMARY OF THE INVENTION
The present invention is conceived to solve the above problem, and one object of the present invention is to provide an active matrix type organic EL panel capable of illuminating each illumination pixel at a uniform brightness by alleviating the characteristic variations of the TFT which controls the organic EL element.
According to one aspect of the present invention, there is provided an active matrix type display device in which each of a plurality of pixels arranged in a matrix form comprises at least an element to be driven and an element driving thin film transistor for supplying power from a driving power supply to the element to be driven; wherein each pixel region of the plurality of pixels has one of the sides in the row direction or column direction of the matrix longer than the other side; and the element driving thin film transistor is placed so that its channel length direction is along the longer side of the pixel region.
According to another aspect of the present invention, in the display device, it is preferable that in the pixel region the side along the column direction of the matrix is longer than the side along the row direction of the matrix; and that the element driving thin film transistor is placed so that its channel length direction is along the column direction.
According to another aspect of the present invention, there is provided a semiconductor device comprising at least one element driving thin film transistor for supplying driving current from a power supply line to a corresponding element to be driven; and a switching thin film transistor for controlling the element driving thin film transistor based on data supplied when selected; wherein the element driving thin film transistor is placed so that its channel length direction is along the extension direction of a data line for supplying the data signal to the switching thin film transistor.
By employing such a configuration, it is possible to increase the channel length of the element driving thin film transistor for supplying power to the element to be driven, and, to thereby improve reliability characteristics of the transistor such as, for example, its durability. In addition, the characteristic of the element driving thin film transistors each provided for an element to be driven can be averaged, and, thus, the variation in the illumination brightness among the elements can be inhibited even when the element to be driven is an emissive element which has different illumination brightness depending on the supplied power. Moreover, the configuration facilitates efficient placement of a plurality of element driving thin film transistors, for example, with sufficient channel length with respect to one element to be driven, in parallel or in series within a pixel and, thus, it is possible to increase the illumination region in a case where the element to be driven is an emissive element.
According to another aspect of the present invention, in the semiconductor device or display device, it is preferable that the element driving thin film transistor is formed so that its channel length direction is along the scan direction of a line pulse laser for annealing the channel region of the transistor.
In this manner, by coinciding the channel length direction of the element driving thin film transistor and the scan direction of the laser annealing, the difference in the transistor characteristics from the element driving thin film transistors for supplying power to other elements to be driven can be reliably reduced.
In laser annealing, the laser output energy tends to vary. The variation includes a variation in the pulse laser within an irradiation region and variation among the shots. In many cases, the element driving thin film transistor which is used for a semiconductor device such as, for example, an active matrix type display device, is designed so that the channel length is significantly greater than the channel width. By placing the element driving thin film transistor along the longer side of the pixel region or forming the element driving thin film transistor along the column

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thin film transistor for supplying power to element to be... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thin film transistor for supplying power to element to be..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thin film transistor for supplying power to element to be... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3243662

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.