Thin film electroluminescent device

Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S502000, C313S503000, C313S504000, C428S690000

Reexamination Certificate

active

06806639

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to electroluminescent devices, and more specifically relates to thin film electroluminescent devices having a doped phosphor layer.
BACKGROUND OF THE INVENTION
Thin film electroluminescent devices are well known, and are generally constructed from a series of thin films deposited onto a substrate. Typically, thin film electroluminescent devices consist of a transparent front electrode layer, a phosphor layer, and a back electrode layer. In an inorganic device, the phosphor layer is usually sandwiched between two dielectric layers. When an alternating voltage is applied across the electrodes, light is emitted from the phosphor layer. A detailed discussion of thin film electroluminescent devices can be found in, for example, U.S. Pat. No. 5,049,780, issued to DOBROWOLSKI et al., the contents of which are incorporated herein by reference. It is also known that the performance characteristics of the phosphor layer can be varied through doping of the phosphor material. Certain doped phosphor materials are discussed in Rack, P. D. and Holloway P. H., “The structure, device physics, and materials properties of thin film electroluminescent displays”,
Materials Science and Engineering, R
21
, January
1998, the contents of which are incorporated herein by reference.
Doped phosphor emitter materials are also taught in WIPO publication WO98/21919, published May 22, 1998 to VELTHAUS. According to VELTHAUS, the phosphor is made out of host crystal material from a compound of one or more earth-alkaline metals (or zinc or cadmium), in which these metals are present in the form of calcogenide, for example as sulphide. The host crystal is doped with traces of a rare earth, for example cerium or bismuth, and with additional traces of silver. VELTHAUS further teaches that a host lattice of SrS:CeCl
3
can be used to obtain blue/green light emission, and by adding Ag to the host lattice, a shift of emissions into the blue spectrum is achieved. As stated in VELTHAUS, this host lattice results in a highly crystalline phosphor layer. However, in certain applications, such high crystallinity is undesirable, as it can increase reflectivity, and/or decrease device life time. Further, VELTHAUS teaches phosphors that include a rare earth or bismuth, and therefore, is not well suited for use in ZnS:Mn based devices.
It will be apparent from the foregoing that prior art electroluminescent devices are generally designed with large-grain crystalline phosphor layers which can be undesirable in certain applications including certain high-contrast and/or high-reliability devices.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel thin film electroluminescent device which obviates or mitigates at least one of the above-described disadvantages of the prior art.
In a first aspect of the invention, there is provided an electroluminescent device comprising: a pair of electrodes of which at least one of the electrodes is transparent to electroluminescent light, and a phosphor layer disposed between the electrodes. The phosphor layer has a host crystal lattice, a first dopant and a second dopant where the first dopant cooperates with the host crystal lattice to cause light emission when a voltage is applied across the pair of electrodes, and the second dopant further distributes the first dopant in the host crystal lattice to increase light emission from the phosphor layer.
In one particular aspect of the first aspect of the invention, the electroluminescent device further comprises at least one dielectric layer disposed between the phosphor layer and at least one of the pair of electrodes. The dielectric layer is chosen from the group consisting of Al
2
O
3
, Y
2
O
3
, SiON, SiO
2
, Ta
2
O
5
, and BaTiO
3
.
In another particular aspect of the first aspect of the invention, the host crystal lattice is a wide band gap semiconductor. The wide band gap semiconductor is chosen from the group consisting of ZnS, ZnSe, ZnSSe, CaS, SrS, SrCaS and BaS.
In yet another aspect of the first aspect of the invention, the first dopant is chosen from the group consisting of Mn, Tb, Ho, Ce and Cu.
In a particular preferred aspect of the first aspect of the invention, the first dopant has a concentration of about 0.1% to about 2% by weight of the host crystal lattice. In a second preferred aspect, the first dopant has a concentration of about 0.2% to about 1% by weight of the host crystal lattice. It is particularly preferrred that the first dopant has a concentration of about 0.3% to about 0.8% by weight of the host crystal lattice. Typically, the first dopant has a preferred concentration of about 0.6% by weight of the host crystal lattice.
In keeping with another aspect of the first aspect of the invention, the second dopant is a Group IB metal. As is known to those of skill in the art, the Group IB metal includes Cu, Ag and Au. Preferably, the second dopant is Ag. In a particular aspect of the first aspect of the invention, the second dopant has a concentration of about 0.25% to about 2% of the first dopant concentration. More particularly, the second dopant has a concentration of about 0.5% to about 1.5% of the first dopant concentration. More particularly, the second dopant has a concentration of about 0.6% to about 1.2% of the first dopant concentration. Typically, the second dopant has a concentration of about 1% of the first dopant concentration.
In an alternative aspect, there is provided a phosphor material comprising: a host crystal lattice, an emitter material doped with the host crystal lattice, and a displacer material doped concurrently with the emitter material to the host crystal lattice for urging the emitter material into substitutional positions within the host crystal lattice.
In another alternative aspect, there is provided a phosphor material comprising: a host crystal lattice, an emitter material doped with the host crystal lattice, and a displacer material doped concurrently with the emitter material to the host crystal lattice for urging the emitter material into light emissive positions within the host crystal lattice such that energy interactions between the emitter material during excitation are reduced and light emissions therefrom are increased.
In yet another aspect of the invention, there is provided an electroluminescent device comprising: a pair of electrodes of which at least one of the electrodes is transparent to electroluminescent light; a phosphor layer disposed between the electrodes; at least one dielectric layer disposed between the phosphor layer and at least one of the pair of electrodes; and a substrate layer above which one of the pair of electrodes, the at least one dielectric layer, the phosphor layer, and the one other of the pair of electrodes are successively deposited. The phosphor layer has a host crystal lattice, a first dopant and a second dopant where the first dopant cooperates with the host crystal lattice to cause light emission when a voltage is applied across the pair of electrodes, and the second dopant further distributes the first dopant in the host crystal lattice to increase light emission from the phosphor layer. Typically, the dielectric layer is Al
2
O
3
, the host crystal lattice is ZnS, the first dopant is Mn, and the second dopant is Ag. It is presently preferred that the first dopant has a concentration of about 0.6% by weight of the host crystal lattice, and that the second dopant has a concentration of about 1% of a first dopant concentration.
In a second aspect of the invention, there is provided a method of assembling at least a portion of an electroluminescent device. The method comprises the steps of: depositing a first electrode above a substrate, forming a phosphor layer above the first electrode, in which the phosphor layer is formed by depositing a host crystal lattice, a light emitting dopant and a dispersing dopant substantially simultaneously above the first electrode such that the dispersing dopant urges at least a portion of the light emitting dopant into positions wi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thin film electroluminescent device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thin film electroluminescent device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thin film electroluminescent device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311442

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.