Thin film electrode for planar organic light-emitting...

Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S917000

Reexamination Certificate

active

06414431

ABSTRACT:

This invention relates to organic light-emitting devices provided with a light-emitting layer structure, which emits light if an electric current is passed therethrough under an applied electric field and which is formed in a layered structure, and, in particular, it relates to an organic light-emitting diode in which thin film electrodes, cathode and anode, are constructed to be suitable for planar large area organic light-emitting devices.
An electroluminescent device (hereinafter, referred to as to “EL device”) is a device from which light is emitted by applying an electric field to a substance, especially a Is semiconductor. Light-emitting diodes are a well-known example of EL devices made from inorganic compound semiconductors of an element (elements) of Groups III to V of the Periodic Table such as GaAs or GaP. These devices emit light effectively at the long wavelength side of the visible light region and are widely utilized for daily electronic appliances, but they have their limit in size and therefore an easy and economical utilization in large-area displays has not yet been realized. As an alternative structure capable of being produced over a large area, thin film type EL devices are well-known which are produced from an inorganic material by doping semiconductors of compounds derived from an element or elements of the Groups II to IV of the Periodic Table such as ZnS, CaS and SrS with Mn or a rare earth metal, for example, Eu, Ce, Tb or Sm as a light-emitting center. However, for driving EL devices using these inorganic semiconductors, alternating current electricity and high voltages are required and thus such EL devices are expensive, and further a full-color device is difficult to obtain.
In order to solve the above problems, EL devices using an organic thin film have been extensively studied. For example, such EL devices include those using a vapor deposition film of an organic luminescent (fluorescent) dye reported in:
S. Hayashi et al., J. Appl. Phys. 25, L773 (1986)
C. W. Tang et al., Appl. Phys. Lett., 51, 913 (1987)
To date, organic EL devices which emit light of from blue to red colors have been developed. Details of organic electroluminescence are described in, for example “Organic EL Device Development Strategy”, compiled by Next Generation Display Device Research Association, Science Forum (published 1992) “Electroluminescent Materials, Devices, and Large-Screen Displays”, SPIE Proceedings Vol. 1910 (1993), E. M. Conwell and M. R. Miller
Further, in recent years, techniques for thin film production by e.g., spin coating or coating have been improved, and EL devices using thermally stable poly(arylene vinylene)polymers have been studied. Such EL devices using poly(arylene vinylene) polymers are described in, for example, the following references:
WO-A 90/13148
Burroughes, Nature, 347, 539 (1990)
D. Braun, Appl. Phys. Lett., 58, 1982 (1991)
However, all high performance devices reported so far have small sizes (e.g. 2 mm×2 mm) of the active device area. One of the major shortcomings presented by the conventional organic light-emitting devices is the difficulty in achieving high efficient operation for large planar displays. A dramatic decrease of the device performance with increase in the size of light-emitting area gives a short device lifetime or even a short circuit without light-emitting.
Up to date, an electroluminescent device consists of electroluminescent layers sandwiched between a metal cathode and transparent conductive anode on substrate.
In such a cathode, the sheet resistance, for example, of Mg:Ag is about 0.5 &OHgr;/square, which is more than one order of magnitude smaller than that of transparent conductive anode of 10 to 100&OHgr;/square.
It has now surprisingly been found that EL devices in which a certain ratio between the sheet resistance of cathode and anode is maintained show improvement in lifetime and EL properties.
Therefore, in one aspect of the present invention an EL-device is provided, comprising at least one organic light emitting layer sandwiched between two electrode layers, characterized in that the ratio r of the sheet resistance of the bottom electrode layer and the top electrode layer is 0.3≦r≦3.
EL devices according to the invention are distinguished inter alia by a uniform distribution of applied voltage along the device plane, as uniform distribution of the electrical current in the total area of the device, and improved luminous efficiency and device lifetime.
In a preferred embodiment the ratio between sheet resistance r in the bottom electrode layer and the top electrode layer is 0.5≦r≦2 in particular 0.8≦r≦1.2.
Referring initially to
FIG. 1
, an electroluminescent device 100 of the invention comprises, in order, a substrate
101
, a bottom electrode layer
102
, an organic layer structure
103
, and a top electrode layer
104
.
Substrate
101
is transparent and e.g. made from glass, quartz glass, ceramic, a polymer, such as polyimide, polyester, polyethylene terephthalate, polycarbonate, polyethylene and polyvinyl chloride. Also the substrate can be non-transparent and e.g. be made from or a single crystal semiconductor selected from the group consisting of either undoped, lightly doped, or heavily doped Si, Ge, GaAs, GaP, GaN, GaSb, InAs, InP, InSb, and Al
x
Ga
1−x
As where x is from 0 to 1, or any other III/V-semiconductor.
The electroluminescence device
100
can be viewed as a diode which is forward biased when the anode is at a higher potential than the cathode. Under these conditions, bottom electrode layer
102
acts as an anode for hole (positive charge carrier) injection when this bottom electrode is preferably made from a high work function material, e.g., nickel, gold, platinum, palladium, selenium, iridium or an alloy of any combination thereof, tin oxide, indium tin oxide (ITO) or copper iodide, also, an electroconductive polymer such as poly(3-methylthiophene), polyphenylene sulfide or polyaniline (PANI) or poly-3,4-ethylene dioxythiophene (PEDOT). These materials can be used independently or by layering two or more materials such as by film coating PANI or PEDOT on ITO. The sheet resistance of said electrode layer is preferably less than 100 &OHgr;/square, more preferably less than 30 &OHgr;/square.
On the other hand, top electrode layer
104
can act as an cathode for electron injection when this top electrode is made from a lower (that is than the botton electrode layer) work function material, preferably a metal or metal alloy, e.g., lithium, aluminum, beryllium, magnesium, calcium, strontium, barium, lanthanum, hafnium, indium, bismuthium, cer, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium or an alloy of any combination thereof or an alloy of one of this metals with another metal. The sheet resistance of said electrode layer is preferably less than 100 &OHgr;/square, more preferably less than 30 &OHgr;/square.
According to the invention bottom electrode layer
102
and top electrode layer
104
have comparable sheet resistance. Technical measures to achieve this are per se well know to someone skilled in the art and are further described in the next paragraphs.
For example, the ration of sheet resistance is satisfied by changing the layer thickness, of either electrodes or both, preferably from 0.1 nm to 1000 nm and more preferably from 1 nm to 400 nm. This variation is possible due to the existence of the following equation:
R
[&OHgr;/square]=&rgr;[&OHgr;*cm]/
d
[cm]
with R is the sheet resistance, &rgr; the specific resistance of the material and d the layer thickness. For example a samarium cathode (&rgr;(samarium)=9*10
−7
&OHgr;*m) exhibits in dependence of the layer thickness the following sheet resistance:
Layer Thickness
Sheet Resistance
[nm]
[&OHgr;/square]
10
90
50
18
100
9
200
4.5
the ratio of sheet resistance also is satisfied by changing background pressure of evaporation for the electrode layer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thin film electrode for planar organic light-emitting... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thin film electrode for planar organic light-emitting..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thin film electrode for planar organic light-emitting... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.