Thermostatically controlled bypass valve and water...

Fluid handling – With heating or cooling of the system – Hot and cold water system having a connection from the hot...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C236S012110, C122S013300, C004S638000, C417S032000

Reexamination Certificate

active

06536464

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to bypass valves for use in home or industrial water distribution systems that supply water to various fixtures at different temperatures through different pipes. More particularly, the present invention relates to such bypass valves that are thermostatically controlled so as to automatically bypass water that is not at the desired temperature for use at the fixture. Even more particular, the present invention relates to use of such a thermostatically controlled bypass valve in a water distribution system utilizing a single circulating pump at the water heater.
2. Background
Home and industrial water distribution systems distribute water to various fixtures, including sinks, bathtubs, showers, dishwashers and washing machines, that are located throughout the house or industrial building. The typical water distribution system brings water in from an external source, such as a city main water line or a private water well, to the internal water distribution piping system. The water from the external source is typically either at a cold or cool temperature. One segment of the piping system takes this incoming cold water and distributes it to the various cold water connections located at the fixture where it will be used (i.e., the cold water side of the faucet at the kitchen sink). Another segment of the piping system delivers the incoming cold water to a water heater which heats the water to the desired temperature and distributes it to the various hot water connections where it will be used (i.e., the hot water side of the kitchen faucet). At the fixture, cold and hot water either flows through separate hot and cold water control valves that are independently operated to control the temperature of the water into the fixture by controlling the flow rate of water from the valves or the water is mixed at a single valve that selectively controls the desired temperature flowing into the fixture.
A well known problem common to most home and industrial water distribution systems is that hot water is not always readily available at the hot water side of the fixture when it is desired. This problem is particularly acute in water use fixtures that are located a distance from the hot water heater or in systems with poorly insulated pipes. When the hot water side of these fixtures is left closed for some time (i.e., overnight), the hot water in the hot water segment of the piping system sits in the pipes and cools. As a result, the temperature of the water between the hot water heater and the fixture lowers until it becomes cold or at least tepid. When opened again, it is not at all uncommon for the hot water side of such a fixture to supply cold water through the hot water valve when it is first opened and for some time thereafter. At the sink, bathtub or shower fixture located away from the water heater, the person desiring to use the fixture will either have to use cold or tepid water instead of hot water or wait for the distribution system to supply hot water through the open hot water valve. Most users have learned that to obtain the desired hot water, the hot water valve must be opened and left open for some time so that the cool water in the hot water side of the piping system will flow out ahead of the hot water. For certain fixtures, such as dishwashers and washing machines, there typically is no method of “draining” away the cold or tepid water in the hot water pipes prior to utilizing the water in the fixture.
The inability to have hot water at the hot water side of the fixture when it is desired creates a number of problems. One problem is having to utilize cold or tepid water when hot water is desired. This is a particular problem for the dishwasher and washing machine fixtures in that hot water is often desired for improved operation of those fixtures. As is well known, certain dirty dishes and clothes are much easier to clean in hot water as opposed to cold or tepid water. Even in those fixtures where the person can let the cold or tepid water flow out of the fixture until it reaches the desired warm or hot temperature, there are certain problems associated with such a solution. One such problem is the waste of water that flows out of the fixture through the drain and, typically, to the sewage system. This good and clean water is wasted. This waste of water is compounded when the person is inattentitive and hot water begins flowing down the drain and to the sewage system. Yet another problem associated with the inability to have hot water at the hot water valve when needed is the waste of time for the person who must wait for the water to reach the desired temperature.
The use of bypass valves and/or water recirculation systems in home or industrial water distribution systems to overcome the problems described above have been known for some time. The objective of the bypass valve or recirculation system is to avoid suppling cold or tepid water at the hot water side of the piping system. U.S. Pat. No. 2,842,155 to Peters describes a thermostatically controlled water bypass valve, shown as
FIG. 2
therein, that connects at or near the fixture located away from the water heater. In his patent, the inventor discusses the lack of hot water problem and describes a number of prior art attempts to solve the problem. The bypass valve in this patent comprises a cylindrical housing having threaded ends that connect to the hot and cold water piping at the fixture so as to interconnect these piping segments. Inside the housing at the hot water side is a temperature responsive element having a valve ball at one end that can sealably abut a valve seat. The temperature responsive element is a metallic bellows that extends when it is heated to close the valve ball against the valve seat and contracts when cooled to allow water to flow from the hot side to the cold side of the piping system when both the hot and cold water valves are closed. Inside the housing at the cold water side is a dual action check valve that prevents cold water from flowing to the hot water side of the piping system when the hot water valve or the cold water valve is open. An alternative embodiment of the Peters' invention shows the use of a spiral temperature responsive element having a finger portion that moves left or right to close or open the valve between the hot and cold water piping segments. Although the invention described in the Peters' patent relies on gravity or convection flow, similar systems utilizing pumps to cause a positive circulation are increasingly known. These pumps are typically placed in the hot water line in close proximity to the faucet where “instant” hot water is desired.
U.S. Pat. No. 5,623,990 to Pirkle describes a temperature-controlled water delivery system for use with showers and eye-wash apparatuses that utilize a pair of temperature responsive valves, shown as
FIGS. 2 and 5
therein. These valves utilize thermally responsive wax actuators that push valve elements against springs to open or close the valves to allow fluid of certain temperatures to pass. U.S. Pat. No. 5,209,401 to Fiedrich describes a diverting valve for hydronic heating systems, best shown in
FIGS. 3 through 5
, that is used in conjunction with a thermostatic control head having a sensor bulb to detect the temperature of the supply water. U.S. Pat. No. 5,119,988 also to Fiedrich describes a three-way modulating diverting valve, shown as
FIG. 6. A
non-electric, thermostatic, automatic controller provides the force for the modulation of the valve stem against the spring. U.S. Pat. No. 5,287,570 to Peterson et al. discloses the use of a bypass valve located below a sink to divert cold water from the hot water faucet to the sewer or a water reservoir. As discussed with regard to
FIG. 5
, the bypass valve is used in conjunction with a separate temperature sensor.
A recirculating system for domestic and industrial hot water heating utilizing a bypass valve is disclosed in U.S. Pat. No. 5,572,985 to Benham. This

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermostatically controlled bypass valve and water... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermostatically controlled bypass valve and water..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermostatically controlled bypass valve and water... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3024441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.