Thermostatic mixing faucet having improved stability

Automatic temperature and humidity regulation – Mixing fluid of dissimilar temperature – Having oscillating or reciprocating valve

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S625410

Reexamination Certificate

active

06517006

ABSTRACT:

TECHNICAL FIELD
The field of this invention relates to a thermostatically controlled mixing valve and more particularly to a thermostatic controlled mixing valve with a volume control feature incorporated therein.
BACKGROUND OF THE DISCLOSURE
Mixing valves are well known and common in the plumbing field. These valves provide a flow of mixed water from separate hot and cold water supplies. Secondly, thermostatic control for handle mixer valves are well known. One reason for thermostatic control is to eliminate constant readjustment of the valve when the temperature of the hot water supply fluctuates. The temperature of the hot water supply may vary substantially. Furthermore, the pressure within the cold water line may also vary changing the proportions of hot and cold water flow and thereby fluctuating the temperature of the mixed water.
Known thermostatic valves have packaging problems and are often significantly bulkier than standard mixing valves that do not incorporate the thermostatic regulation. This bulkiness is due to the flow path that has always been used for thermostatic faucets, namely the supply inlets approach the centrally located thermostatic valve from a radially outer position.
When thermostatic valves are incorporated into mixer valves, the volume or flow control valves may be installed either downstream or upstream from the thermostatic valve element. When the flow is regulated downstream of the thermostatic element within the mixed water flow, installation of non-return valves are needed in order to prevent the possibility of communication between the hot water supply and the cold water supply. When the flow control of the hot and cold water supplies is upstream of the thermostatic valve before the water is mixed, the return valves are not needed. For this economic reason, most thermostatic mixing valves have the volume control upstream of the thermostatic element.
However when the flow is regulated with respect to the hot and cold water supplies, the thermostatic device is unable to maintain the constant temperature due to the variations of the flow rates. It is well known that when hot and cold water supply pressures are approximately equal or with the hot supply pressure being only slightly lower than the cold water pressure, the difference in flow rate or variation between the hot and cold water supplies is increased when the total flow is reduced and the rise in temperature can sometimes become significant. On the other hand, if the hot water supply pressure is substantially lower than the cold water supply pressure, as is often the case due the increased corrosion of the hot water pipelines, the difference in the flow rate or variation of the flow rate between the hot and cold water supplies is decreased as the total flow rate is reduced.
Contoured apertures in a pair of disc plate valves have been known to contour the water flow profile between the hot and cold water supplies. However, these plate valves are set to move both rotatably and translationally with respect to each other to mechanically control both the total flow rate and the temperature mix of the hot and cold water.
A thermostatic mixing valve has been developed that includes two inlets for hot water and cold water, a mixing chamber, passages between the inlets and the mixing chamber, an outlet for the mixed water which runs from the mixing chamber, an expanding thermostatic element placed, at least in part, within the outlet so that it will be in contact with the mixed water. A slide valve is activated by the thermostatic element and acts on one or both of the inlet passages to maintain the mixed water at a constant temperature. The inlets are located in a central body situated inside the slide valve activated by the thermostatic element. A pair of valve plates crossed by passages for the water are positioned to control total flow rate through the inlets for the hot water and cold water without affecting the outlet for the mixed water. The valve plates are controlled by rotation of an external body or housing of the thermostatic mixing valve. A thermostatic mixing valve of this kind has proved to be very advantageous, yet (like other types of thermostatic mixing valve) it can prove to be inconvenient in certain conditions.
If a thermostatic mixing valve, which is designed to be able to deliver a determined rate of flow, supplies a device downstream which, due to its own high resistance only allows delivery of a much lower rate of flow, the fall in pressure at the inlet produced by the pair of valve plates is greatly reduced in comparison to the fall in pressure at the inlet produced by the downstream device and the pressure inside the thermostatic mixing valve is close to the pressure in the supply pipes. If a considerable difference in pressure then occurs between the hot and cold water supplies, for example because of the actuation of a device with high rate of flow that uses primarily hot or cold water upstream from thermostatic valve, the valve will then be unstable and will start to oscillate, because of the cross-flow which occurs inside the thermostatic valve. The oscillation will cause malfunctioning and temperature instability in the mixed water delivery downstream from the thermostatic valve. This situation may occur when a thermostatic mixing valve is designed to supply a relatively high rate of flow, such as for example 50 or 60 liters per minute at 3 bars but is used with a much lower delivery rate, for example 9 liters per minute due to the resistance or restriction at the outlet on certain downstream devices. This situation occurs, for example, when the thermostatic mixing valve is installed to supply a bank with multiple outlets, each of which is equipped with its own on/off valve, and the user makes use of only one outlet. More generally, the situation occurs when the thermostatic mixing valve is capable of supplying many devices and only one or a few of these devices are actually in operation at any given time.
In fact, the user could in theory prevent this instability by accurate regulation of the thermostatic mixing valve, so as create a resistance at the inlet that proportional to the resistance at the outlet. However, this is not possible in practice, because well-known thermostatic mixing valves do not offer sufficiently sensitive regulation at low rates of flow. Furthermore, since the rate of flow is limited at the outlet of a device with high restriction or resistance, the user is not aware of the effect of the regulation at the downstream device and is therefore not in a position to decide whether the regulation he has carried out is adequate to avoid the noted problem.
This problem which also occurs with other kinds of thermostatic mixers, has usually been remedied by installing a pressure controller in the supply pipes upstream of the thermostatic mixing valve. This pressure controller, however, increases the size, complexity and expense of the installation and renders the device less reliable.
What is needed is a compact thermostatic valve that is easily assembled and controls the temperature of the mixed water output. What is also needed is a thermostatic control built into a valve with flow control that provides proper thermostatic control at a wide range of flow rates.
SUMMARY OF THE DISCLOSURE
In accordance with an aspect of the invention, a thermostatic mixing valve has a cold water inlet port and a hot water inlet port in communication with a base having two supply ports. A handle body is rotatably mounted onto the base and is operably connected to a first valving surface with two inlet passages therethrough that are operably positioned adjacent the two supply ports for controlling total flow rate into the housing. A thermostat element is operably connected to a second valving surface to move the second valving surface between a first and second seat for controlling the relative flow from the first and second inlet passages in response to the temperature of fluid in the mixing chamber.
The ports and the first valving surface are incorporated in two c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermostatic mixing faucet having improved stability does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermostatic mixing faucet having improved stability, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermostatic mixing faucet having improved stability will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123093

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.