Thermoset recycling methods and solid article produced

Plastic and nonmetallic article shaping or treating: processes – Forming continuous or indefinite length work – Shaping by extrusion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S176100, C264S235000, C521S041000, C521S044500

Reexamination Certificate

active

06620363

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to recycling methods, and more particularly to recycling of thermoset materials such as rubber.
BACKGROUND OF THE INVENTION
A need exists for efficient and cost-effective methods for recycling thermoset materials. Because they undergo irreversible chemical changes, termed cross-linking, during processing, thermoset materials are difficult to recycle by conventional methods. Thermosets are generally used in high performance applications, such as in composite materials and tires, and include polyesters, polyurethanes, phenolics, melamines, epoxies, and rubbers.
By volume, the majority of thermosetting polymers comprises the chemically cross-linked rubbers used in tires. Rubber tires also make up a large volume of polymer waste today; in the United States alone, for example, there are an estimated two to three billion tires currently piled up in landfills, with another 250 million tires being discarded annually. In addition to taking up space in landfills, piles of discarded tires represent a major fire and health hazard.
Rubber is among the most difficult of all polymers to recycle, as rubbers have very high molecular weights and are chemically cross-linked, both of which factors render them insoluble and non-meltable. They are also filled with submicron-sized carbon black, which is nearly impossible to separate from the rubber.
Currently, there are few, primarily low technology, uses for materials reclaimed from scrap rubber tires. For example, rubber tires have been cut into sections or strips for use as flooring, mats, vibration and abrasion pads, and shoe soles. Scrap rubber and whole tires have also been burned as a fuel, but their use in this manner is also a source of pollution, since tires generally also include potentially toxic additives in addition to the rubber.
Another method of disposing of tires involves grinding the tires. In a typical grinding process, the steel and polymer fiber reinforcements are recovered from the tires, and the rubber is converted into either a fine particulate, called powder, or a very coarse particulate called crumb. These particulate rubber particles have been used as fillers in asphalt, cements, and roofing materials. Efforts have been made to blend tire powder or crumb into virgin rubber (e.g., at loadings of about 5-10%), but such processes require careful quality control as several different types of rubber are often present in a single tire, and they are not necessarily compatible with one another. For example, the tread, sidewall and inner lining materials usually have different formulations. Crumb rubber has also been used as a bedding material for cattle and hogs, as a replacement for sand in children's playgrounds, and as a component in flooring for athletic tracks and related applications. There are several companies in America grinding tires using either an ambient temperature solvent based process or a cryogenic dry process.
SUMMARY OF THE INVENTION
The invention provides new methods for recycling thermoset materials such as natural rubbers, synthetic rubbers, silicone rubbers, and other elastomers and cross-linked polymers (e.g., isoprene rubbers; butyl rubbers; ethylene-propylene-diene rubbers, “EPDM”; nitrile, or acrylonitrile butadiene rubbers, “NBR”; styrene-butadiene rubbers, “SBR”; hard rubbers such as EBONITEX®; mixtures of vulcanized rubbers from discarded tires). The invention is based on the discovery that by combining powdered or particulate thermoset materials with lubricants such as aromatic or paraffinic rubber processing oils or volatile solvents, the thermoset materials can be recycled under moderate temperature and pressure conditions to rapidly produce materials having physical properties nearing those of virgin thermoset materials. The resulting materials can, for example, be extruded or compaction molded into new shapes such as panels. The new recycling methods can also be carried out in either batch or continuous processes.
According to the new methods, rubber particles subjected to conditions of approximately 15 MPa (about 2200 psi) and 200° C. for one hour form a single piece of rubber with excellent mechanical properties similar to those of virgin rubber. In addition, a solid part can be obtained in 5 minutes under a temperature of 180° C. at about 1500 psi.
In general, the invention features methods for recycling thermoset materials such as rubber. The methods include the steps of adding a lubricant (e.g., a material such as an aromatic oil, a paraffinic oil, a volatile solvent, or a combination of such materials, that makes the thermoset material more processible; the added lubricant can remain in the rubber after processing or can be extracted during or after processing) to thermoset material to be recycled to obtain a lubricated material; and heating the lubricated material under an elevated pressure to obtain the recycled thermoset material.
The thermoset material to be recycled can include, for example, one or more of EPDM rubber, SBR rubber, NBR rubber, natural rubber, silicone rubber, isoprene rubber, and butyl rubber. The rubber can be vulcanized (e.g., cross-linked, particularly via sulfur—sulfur bonds), such as vulcanized rubber derived from discarded tires.
The rubber to be recycled can be, for example, in the form of a powder (e.g., particulate or crumb rubber).
The heating step can be conducted, for example, while the lubricated material is under a pressure of up to 10,000 psi or higher (e.g., 250 psi, 500 psi, 1,000 psi, 1,500 psi, 2,000 psi, 2,500 psi, 3,000 psi, 5,000 psi, 7,500 psi, 10,000 psi, or intermediate pressures such as 500 to 2,500 psi). The temperature can be, for example, between about 100° C. and the decomposition temperature of the rubber (e.g., 100° C., 150° C., 180° C., 200° C., 220° C., 230° C., 240° C., 250° C., or higher, or intermediate pressures such as 180-220° C.). The duration of heating under pressure can be, for example, from about 20 seconds to about 8 hours, e.g., 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, 2 hours, 3 hours, or longer, or intermediate times such as 1 to 60 minutes).
Another aspect of the invention features a process for making solid objects (e.g., hard or soft objects, including foam objects) from previously vulcanized rubber. The method includes the steps of obtaining vulcanized rubber ground into a powder; mixing the rubber powder with a lubricant (e.g., aromatic oils, paraffinic oils, and/or volatile solvents) to produce a rubber paste; and feeding the rubber paste into an extruder. The extruder heats the paste under pressure and then extrudes the paste to produce the solid or foam objects.
The process can, for example, be a continuous process. In such a continuous process, the solid objects initially formed can be, for example, green parts, and the process can also include heating the green parts in a post-annealing step (e.g., at ambient or elevated pressure) for a sufficient time (e.g., 20 minutes, 30 minutes, 1 hour, 2 hours, or longer) to produce hardened objects. The paste can, for example, be extruded into a mold, which can optionally be heated. The process can be a ram extrusion process.
The recycled rubber and objects prepared according to these methods and processes are also considered to be an aspect of the invention.
The invention provides several advantages. For example, generally require moderate pressures and temperatures. The new methods can make use of commercially available rubber powder. Since powder obtained by grinding tires already contains the ultra-fine carbon black fillers required to reinforce rubber materials, the use of the powder in the new methods eliminates a processing step.
In the new methods, one minute or less can be adequate time for obtaining a “green” part that can then be post-treated after molding at elevated temperatures for longer periods of time at ambient pressure, even without any powder preheating. The rapidity of production of green parts in the new methods makes them amenable to use in continuous recycling processes

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoset recycling methods and solid article produced does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoset recycling methods and solid article produced, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoset recycling methods and solid article produced will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3086030

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.