Thermosensitive biodegradable polymers based on poly(ether-ester

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424426, 424424, 424486, 424501, 6048911, A61K 910, A61K 916

Patent

active

057027170

ABSTRACT:
A system and method for the parenteral delivery of a drug in a biodegradable polymeric matrix to a warm blooded animal as a liquid with the resultant formation of a gel depot for the controlled release of the drug. The system comprises an injectable biodegradable block copolymeric drug delivery liquid having reverse thermal gelation properties. The delivery liquid is an aqueous solution having dissolved or dispersed therein an effective amount of a drug intimately contained in a biodegradable block copolymer matrix. The copolymer has a reverse gelation temperature below the body temperature of the animal to which it is administered and is made up of (i) a hydrophobic A polymer block comprising a member selected from the group consisting of poly(.alpha.-hydroxy acids) and poly(ethylene carbonates) and (ii) a hydrophilic B polymer block comprising a polyethylene glycol. Prior to use the liquid is maintained at a temperature below the reverse gelation temperature of the block copolymer. The liquid is parenterally administered into the animal by intramuscular, intraperitoneal, subcutaneous or similar injection with the liquid forming a gel depot of the drug and biodegradable block polymer as the temperature of the liquid is raised by the body temperature of the animal the reverse gelation temperature of the block copolymer. The drug is released at a controlled rate from the copolymer which biodegrades into non-toxic products. The degradation rate can be adjusted by proper selection of the poly(.alpha.-hydroxy acid) utilized in forming the biodegradable hydrophilic A block.

REFERENCES:
patent: 4438253 (1984-03-01), Casey et al.
patent: 4526938 (1985-07-01), Churchill et al.
patent: 4652441 (1987-03-01), Okada et al.
patent: 4745160 (1988-05-01), Churchill et al.
patent: 4938763 (1990-07-01), Dunn et al.
patent: 5100669 (1992-03-01), Hyon et al.
patent: 5278202 (1994-01-01), Dunn et al.
patent: 5324519 (1994-06-01), Dunn et al.
patent: 5330768 (1994-07-01), Park et al.
"Rapidly Degraded Terpolymers of di-Lactide, Glycolide and .epsilon.-Caprolactone with Increased hydrophilicity by Copolymerization with Polyethers" Amarprett S. Sawhney and Jeffrey A. Hubbell; Department of Chemical Engineering, University of Texas.
"Inulin Disposition Following Intramuscular Administration of an Inulin/Poloxamer Gel Matrix" Thomas P. Johnston and Susan C. Miller; Journal of Parenteral Science & Technology vol. 43, No. 6 / Nov.-Dec. 1989.
"Sustained Delivery of Interleukin-2 from a Poloxamer 407 Gel Matrix Following Intraperitoneal Injection in Mice" Thomas P. Johnston, Monika A. Punjabi, and Christopher J. Froelich; Pharmaceutical Research, vol. 9 No. 3, 1992.
"Bioerodible Hydrogels Based on Photopolymerized Poly(ethyleneglycol)-co-poly(.varies.-hydroxyacid) Diacrylate Macromers" Amarpreet S. Sawhney, Chandrashekhar P. Pathak, and Jeffrey A. Hubbell; Macromolecules, vol. 26, No. 4, 1993.
"Angiopeptin as a Potent Inhibitor of Myointimal Hyperplasia" Takehisa Matsuda, Noboru Motomura and Takashi Oka; ASAIO Journal 1993.
"Micellisation and Gelation of Triblock Copolymer of Ethylene Oxide and .varies.-Caprolactone, CL.sub.n E.sub.m CL.sub.n, in Aqueous Solution." Luigi Martini, David Attwood, John H. Collette, Christian V. Nicholas, Siriporn Tanodekaew, Nan-Jie Deng, Frank Heatley and Colin Booth; J. Chem. SOC. Faraday Trans. 1994.
"Enhancement of Therapeutic Effects of Recombinant Interleukin 2 on a Transplantable Rat Fibrosarcoma by the Use of a Sustained Release Vehicle, Pluronic Gel." Kiyoshi Morikawa, Futoshi Okada, Masuo Hosokawa, and Hiroshi Kobayashi; Cancer Research 47, 37-41, Jan. 1, 1987.
"Toxicological Evaluation of Poloxamer Vehicles for Intramuscular Use." Thomas P. Johnston and Susan C. Miller; Journal of Parenteral Science and technology vol. 39, No. 2 / Mar.-Apr. 1985.
"In-vitro degradation and bovine serum albumin release of the ABA triblock copolymers consisting of poly (L(+)lactic acid), or poly (L(+)lactic acid-co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks" Li Youxin, Christian Volland, Thomas Kissel; Journal of Controlled Release 32 (1994).
"Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly (L-lactic acid) or poly(L-lactic-co-glycolic acid) A-blocks attached to central poly (oxyethylene) B-blocks" Li Youxin and Thomas Kissel; Journal of Controlled Release, 27 (1993).
"Sustained-Release of Urease from a Poloxamer Gel Matrix". K.A. Fults and T.P. Johnston; Journal of Parenteral Science & Technology vol. 44, No. 2/Mar.-Apr. 1990.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermosensitive biodegradable polymers based on poly(ether-ester does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermosensitive biodegradable polymers based on poly(ether-ester, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermosensitive biodegradable polymers based on poly(ether-ester will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-200054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.