Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Include electrolyte chemically specified and method
Reexamination Certificate
1999-09-08
2003-05-13
Maples, John S. (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Current producing cell, elements, subcombinations and...
Include electrolyte chemically specified and method
C429S314000, C429S317000, C526S230500, C526S227000, C526S310000
Reexamination Certificate
active
06562513
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a thermopolymerizable composition for obtaining a highly ion-conductive solid polymer electrolyte, a solid polymer electrolyte obtained by polymerizing the thermopolymerizable composition, a battery and an electric double-layer capacitor using the solid polymer electrolyte, and processes for manufacturing the same.
BACKGROUND ART
In view of the trend of downsizing and desire to eliminate non-solid components in the field of ionics, demand has increased for commercial use of solid-state primary or secondary batteries and electric double-layer capacitors using solid electrolytes as a new ionic conductor rather than the conventional electrolytic solutions.
More specifically, in conventional batteries with electrolytic solutions, leakage of the electrolyte solution or elution of the electrode substance outside the battery is likely to occur, which presents a problem in long-term reliability.
Electric double-layer capacitors using a carbon material having a large specific surface area as the polarizable electrodes and disposing an ionic conducting solution therebetween also have problems in long-term use and reliability because as long as the capacitor uses an existing electrolytic solution, leakage of the solution outside the capacitor is likely to occur during the use for a long period of time or when a high voltage is applied. Electric double-layer capacitors using conventional inorganic ionic conducting substances additionally have a problem that the decomposition voltage of the ionic conducting substances is low and the output voltage is low.
On the other hand, batteries and electric double-layer capacitors using a solid polymer electrolyte are free of problems such as leakage of the solution or elution of the electrode substance and can be processed into various forms or easily be sealed. Also, these can be easily reduced in the thickness. Furthermore, it is reported that in the case of an electric double-layer capacitor using a polyphosphagen-based organic polymer as the main component of ionic conducting substance, the output voltage is high as compared with those using an inorganic ionic conducting substance (see, for example, JP-A-4-253771 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”)).
Studies of solid polymer electrolytes in general have succeeded in improving the ionic conductivity to approximately from 10
−4
to 10
−5
S/cm at room temperature, however, this is still low by more than two orders of magnitude as compared with that of liquid ionic conducting substances. The same applies to solid polymer electrolytes having introduced thereinto an oligo-oxyethylene chain, which are being taken notice of in recent years (see, for example, U.S. Pat. No. 5,194,490). Furthermore, there is a problem that at low temperatures of 0° C. or less, the ionic conductivity generally decreases to an extreme extent.
For installing a solid polymer electrolyte into a battery or electric double-layer capacitor, a method of using an electrolyte and a polymerizable compound as the main components of solid polymer electrolyte, loading these into a battery or capacitor structure body in the form of liquid or gel and compounding them by curing, is being studied.
For curing the polymerizable composition, curing methods using active rays are heretofore being aggressively studied and investigated. However, in view of the construction of battery, it is difficult to simultaneously compound and integrate respective elements of positive electrode, negative electrode and/or separator, with the polymerizable composition for solid polymer electrolyte by the irradiation of light. Particularly, in the case where a positive electrode, a solid polymer electrolyte and a negative electrode are stacked or rolled up, each element does not transmit light and therefore, they are difficult to integrate. Furthermore, the polymerizable composition is prone to oxygen inhibition by the contacting air and this disadvantageously gives rise to curing failure.
A method by heat curing is also proposed, in which respective elements of positive electrode, negative electrode and/or separator, and the solid polymer electrolyte may be cured and at the same time, compounded and integrated, and the internal impedance of the battery can be reduced. This method is superior for a type having difficulties in the curing by active rays, that is, a type where a positive electrode, a solid polymer electrolyte and a negative electrode are stacked or rolled up. However, in the case of a polymerizable composition for solid polymer electrolyte using a thermopolymerization initiator, the initiator is mostly determined by the desired curing temperature, therefore, for example, when the electrolytic solution contains a low boiling point solvent, use of initiators having radical generation at high temperatures is limited so as not to cause changes in the solution composition due to volatilization of the solvent. To cope with this problem, a polymerization accelerator is used in combination so that curing at a temperature of from room temperature to a medium temperature (about 80° C.) can be performed. The polymerization accelerator or decomposition products thereof, however, deteriorates the current properties such as ionic conductivity of the solid polymer electrolyte or the properties such as cycle life. If the curing is performed only by heating without using any polymerization accelerator, due to dependency of the curing rate on the thermal decomposition rate of the thermopolymerization initiator, it takes a long time to reach the curing when the temperature is low. It is a common technique to increase the amount of the polymerization initiator or radicals generated so as to efficiently perform curing. However, the amount of unreacted initiator or decomposition products increases, and these disadvantageously have adverse effects on the current properties such as ionic conductivity or electrochemical properties such as cyclability.
As such, if the curability of the thermopolymerizable composition is increased by using an initiator or accelerator having high initiation efficient at low or medium temperatures or by increasing the amount of polymerization initiator, there arises a problem in the storage stability such as gelation of the thermopolymerizable composition, increase in viscosity, etc. accordingly, a polymerizable composition for solid polymer electrolyte, having good heat curability and excellent storage stability is being keenly demanded.
OBJECT OF THE INVENTION
An object of the present invention is to provide a thermopolymerizable composition for a solid polymer electrolyte having excellent ionic conductivity at room temperature and also at low temperatures and having sufficient strength, said thermopolymerizable composition having good curability, excellent storage stability and high practicability in which a polymerization initiator having good thermopolymerization initiating ability and a polymerizable compound having good curability are combined and a specific polymerization retarder is used to prolong the duration of possible use of the thermopolymerizable composition.
Also, an object of the present invention is to provide a solid polymer electrolyte having high ionic conductivity and good stability, comprising an electrolyte and a polymer having a cross-linked and/or side chain structure obtained from the above-described thermopolymerizable composition.
Another object of the present invention is to provide a primary battery and a secondary battery, capable of working at high capacity and high current, having long life and high reliability, and being produced at a low cost, in which the above-described solid polymer electrolyte is used inside the battery.
Still another object of the present invention is to provide an electric double-layer capacitor with a high output voltage, a large takeout current, good processability, long life, excellent reliability and profitability in the production, in which the above-described sol
Naijo Shuichi
Takeuchi Masataka
Maples John S.
Showa Denki Kabushiki Kaisha
LandOfFree
Thermopolymerizable composition for battery use does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thermopolymerizable composition for battery use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermopolymerizable composition for battery use will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3061660