Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...
Reexamination Certificate
2001-05-01
2002-10-15
Dawson, Robert (Department: 1712)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
At least one aryl ring which is part of a fused or bridged...
C524S349000, C524S730000, C524S731000, C524S862000, C525S431000, C525S446000
Reexamination Certificate
active
06465552
ABSTRACT:
FIELD OF THE INVENTION
This invention provides a method of preparing thermoplastic elastomer compositions comprising mixing a filled silicone gum, a compatibilizer, an optional stabilizer, a polyamide resin or a polyester resin and the silicone gum and dynamically vulcanizing the silicone gum via a radical initiator.
BACKGROUND OF THE INVENTION
Thermoplastic elastomer vulcanizates (TPV), represent a known class of thermoplastic elastomers. These materials are prepared by a process known as dynamic vulcanization wherein an elastomer is dispersed in a thermoplastic resin and the elastomer is subsequently cured with the aid of a crosslinking agent and/or catalyst during the mixing process. A number of such TPV systems are known in the art, including some wherein the crosslinked elastomeric component can be a silicone polymer while the thermoplastic component is an organic (i.e., non-silicone) polymer. For example, Arkles, in U.S. Pat. No. 4,500,688, discloses semi-interpenetrating networks (semi-IPN) wherein a vinyl-containing silicone fluid having a viscosity of 500 to 100,000 cS is dispersed in a conventional thermoplastic resin. The vinyl-containing silicone is vulcanized in the thermoplastic during melt mixing according to a chain extension or crosslinking mechanism, which employs a silicon hydride-containing silicone component. Typical thermoplastics mentioned include polyamides, polyurethanes, styrenics, polyacetals and polycarbonates. This disclosure is expanded by Arkles in U.S. Pat. No. 4,714,739 to include the use of hybrid silicones which contain unsaturated groups and are prepared by reacting a hydride-containing silicone with an organic polymer having unsaturated functionality. Although Arkles discloses a silicone fluid content ranging from 1 to 40 weight percent (1 to 60% in the case of the '739 patent), there is no suggestion of any criticality as to these proportions or to the specific nature of the organic resin.
Crosby et al., in U.S. Pat. No. 4,695,602, teach composites wherein a silicone semi-IPN vulcanized via a hydrosilation reaction is dispersed in a fiber-reinforced thermoplastic resin having a high flexural modulus. The silicones employed are of the type taught by Arkles, cited supra, and the composites are said to exhibit improved shrinkage and warpage characteristics relative to systems, which omit the semi-IPN.
Ward et al., in U.S. Pat. No.4,831,071, disclose a method for improving the melt integrity and strength of a high modulus thermoplastic resin to provide smooth-surfaced, high tolerance profiles when the modified resin is melt-drawn. As in the case of the disclosures of Arkles et al., cited supra, a silicone mixture is cured via a hydrosilation reaction after being dispersed in the resin to form a semi-IPN, and the resulting composition is subsequently extruded and melt-drawn.
U.S. Pat. No. 6,013,715 to Gomowicz et al. teaches the preparation of thermoplastic silicone vulcanizates (TPSiV) wherein a silicone gum (or filled silicone gum) is dispersed in either a polyolefin or a poly(butylene terephthalate) resins and the gum is subsequently dynamically vulcanized therein via a hydrosilation cure system. The resulting elastomers exhibit an ultimate elongation at break of at least 25% and have significantly improved mechanical properties over the corresponding simple blends of resin and silicone gum in which the gum is not cured (i.e., physical blends). This is, of course, of great commercial significance since the vulcanization procedure, and the cure agents required therefor, add to both the complexity as well as the expense of the preparation and vulcanization would be avoided in many applications if essentially identical mechanical properties could be obtained without its employ.
EP 651,009A1 to Sumitomo Bakelite Co., published May 3, 1995, discloses a thermoplastic elastomer composition which is prepared by dynamically vulcanizing a mixture comprising an unsaturated organic (i.e., non-silicone) rubber, a thermoplastic resin, an SiH-containing crosslinker, a hydrosilating catalyst and a compatibilizing agent.
U.S. Pat. No. 6,153,691, discloses the preparation of TPSiVs by a condensation cure mechanism. The silicone component employed contains silanol (—SiOH) functionality and is cured with an organohydrido functional crosslinker in the presence of, e.g., an organotin condensation catalyst.
Publication EP 506,465 A2 to Japan Synthetic Rubber Co. discloses thermoplastic elastomers having improved mechanical properties, resistance to heat and oil, and compression set. These systems are prepared by mixing a thermoplastic polyester elastomer with a rubber and dynamically vulcanizing the rubber as these components are mixed. Various stabilizers and compatibilizers may be incorporated in the compositions, but no criticality is ascribed to these optional ingredients. Further, this publication only teaches the preparation of a thermoplastic elastomer from another thermoplastic elastomer and, although silicone rubber is used in one example, the incorporation of a compatibilizer is not suggested.
Thus, although the above cited publications disclose the preparation of thermoplastic elastomer compositions using various thermoplastic resins as the matrix and a silicone phase which is dynamically vulcanized therein, neither these publications teach TPSiV compositions containing a compatibilizer and an optional thermal stabilizer wherein the silicone is cured by a radical reaction.
SUMMARY OF THE INVENTION
The present invention, therefore, relates to a thermoplastic elastomer prepared by
(I) mixing,
(A) a thermoplastic resin selected from
(A′) a thermoplastic resin comprising more than 50 percent by volume of a polyamide resin or
(A″) a thermoplastic resin comprising more than 50 percent by volume of a polyester resin,
(B) a silicone base comprising;
(B′) 100 parts by weight of a diorganopolysiloxane gum having a plasticity of at least 30 and having an average of at least 2 alkenyl groups per molecule and
(B″) 5 to 200 parts by weight of a reinforcing filler,
wherein the weight ratio of said silicone base to said polyamide or polyester resin is from 35:65 to 85:15,
(C) a compatibilizer,
(D) a radical initiator, present in an amount sufficient to cure said diorganopolysiloxane gum, and optionally
(E) a stabilizer,
(II) dynamically vulcanizing said diorganopolysiloxanes gum,
wherein said thermoplastic elastomers have an elongation of at least 25% and at least one property of said thermoplastic elastomers selected from tensile strength or elongation is at least 25% greater than the respective property for a corresponding simple blend wherein said diorganopolysiloxanes gum is not cured.
The invention further relates to thermoplastic elastomers, which are prepared by the above method.
DETAILED DESCRIPTION OF THE INVENTION
Component (A) of the present invention is a thermoplastic resin selected from
(A′) a thermoplastic resin comprising more than 50 percent by volume of a polyamide resin or
(A″) a thermoplastic resin comprising more than 50 percent by volume of a polyester resin,
Component (A′) of the present invention is a thermoplastic polyamide resin. These resins are well known by the generic term “nylon” and are long chain synthetic polymers containing amide (i.e., —C(O)—NH—) linkages along the main polymer chain. For the purposes of the present invention, the polyamide resin has a softening point of at least about 25° C. (i.e., below this point, the resin is no longer a thermoplastic). As used herein, “softening point” corresponds to the melting point of the resin when it is at least partially crystalline and corresponds to the glass transition temperature when the resin is completely amorphous. Preferably, the softening point of the polyamide resin is between 25° C. and 275° C., more preferably between 150° C. and 275° C. and most preferably between 175° C. and 265° C. It is preferred that the polyamide resin is dried prior to use, as generally recommended by the manufacturer. This is typically accomplished by pas
Chorvath Igor
Fournier Frances Marie
Julien Christopher James
Lee Michael Kang-Jen
Lee Yong-jun
Dawson Robert
Dow Corning Corporation
Zimmer Marc S.
Zombeck Alan
LandOfFree
Thermoplastic silicone elastomers employing radical cure does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thermoplastic silicone elastomers employing radical cure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoplastic silicone elastomers employing radical cure will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2971214