Thermoplastic polyurethane golf ball with improved resiliency

Games using tangible projectile – Golf – Ball

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S372000, C473S378000, C473S385000, C528S066000, C528S079000, C524S839000, C524S847000, C525S129000, C525S207000, C525S208000

Reexamination Certificate

active

06645091

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to golf balls and, more specifically, to golf balls having components such as cores, intermediate layers, and covers formed of a polymer blend comprising a thermoplastic polyurethane composition. The thermoplastic polyurethane composition comprises at least one diisocyanate and a polyol, as well as at least a diol curing agent or a secondary diamine curing agent. The golf balls of the present invention have been found to provide desired playing characteristics such as durability and improved resilience.
BACKGROUND OF THE INVENTION
Conventional golf balls can be divided into two general types or groups: solid balls and wound balls. The difference in play characteristics resulting from these different types of constructions can be quite significant. Balls having a solid construction are generally most popular with the average recreational golfer because they provide a very durable ball while also providing maximum distance. One-piece solid golf balls are well-known in the art. Other types of solid balls, also well known in the art, are made with a solid core, usually formed of a crosslinked rubber, which is encased by a cover material. Typically, solid cores are formed of polybutadiene that is chemically crosslinked with zinc diacrylate and/or similar crosslinking agents. The solid cores are covered by a tough, cut-proof cover, generally formed of a material such as SURLYN®, an ionomer resin produced by E. I. DuPont de Nemours and Co. of Wilmington, Del.
Ionomer resins have, to a large extent, replaced balata as a cover material. Chemically, ionomer resins are a copolymer of an olefin and an a,&bgr;-ethylenically-unsaturated carboxylic acid having 10-90% of the carboxylic acid groups neutralized by a metal ion. Commercially available ionomer resins include, for example, copolymers of ethylene and methacrylic or acrylic acid neutralized with metal salts, such as SURLYN®, and IOTEK® from Exxon Corporation. These ionomer resins are distinguished by the type of metal ion, the amount of acid, and the degree of neutralization.
Surrounding the core with an ionomeric cover material provides a ball that is virtually indestructible by golfers. Further, such a combination imparts a high initial velocity to the ball which results in improved distance. Because the materials of which the ball is formed are very rigid, solid balls generally have a hard “feel” when struck with a club. Likewise, due to their hardness, these balls have a relatively low spin rate which is another factor in providing greater distance.
It is well known in the art to modify the properties of a conventional solid ball by altering the typical single layer core and single cover layer construction to provide a multi-layer ball having such as a dual cover layer, dual core layer and/or a ball having a mantle layer disposed between the cover and the core. Like the solid cores, various cover layers, mantle layers, and intermediate layers are typically formed of polybutadiene which is chemically crosslinked with zinc diacrylate and/or similar crosslinking agents. The playing characteristics of multi-layer balls, such as “feel” and compression, can be tailored by varying the properties of one or more of these intermediate layers.
The wound ball, though, remains the preferred ball of more advanced players due to its spin and feel characteristics. Wound balls typically have either a solid rubber or liquid center core around which tensioned elastic thread or yam are wound. This wound core is then covered with a durable cover material, such as SURLYN®, or a softer cover material, such as balata or polyurethane. Balata is a natural or synthetic trans-polyisoprene rubber that is the favored cover material for highly-skilled golfers because of its softness. Wound balls are generally softer and provide more spin than non-wound balls, a characteristic that enables a skilled golfer to have more precise control over golf ball direction, flight profile, and distance. The enhanced control and stopping ability of a balata-covered, wound ball is particularly evident on approach shots into the green, where the high spin rate of these balls enables the golfer to stop the ball very near its landing position. Balata-covered balls, however, are easily damaged, and therefore lack the durability required by the recreational golfer.
A number of patents have been issued that are directed towards modifying the properties of layers used in forming conventional solid balls, multi-layer balls having dual cover layers, dual core layers and/or balls having a mantle layer disposed between the cover and the core, and wound balls. For example, polyurethanes have been recognized as useful materials for golf ball covers since as early as about 1960. U.S. Pat. No. 3,147,324 is directed to a method of making a golf ball having a polyurethane cover.
Thermoplastic polyurethane is the product of a reaction between at least one diisocyanate and at least one polyol, and a curing agent. The curing agents used in the thermoplastic polyurethane compositions are typically secondary diamines or diols. A catalyst is often employed to promote the reaction between the diisocyanate, polyol, and the secondary diamines or the diols. Typical catalysts include metal catalysts, such as bismuth, organic acids, such as acetic acid and oleic acid, heat-activated, delayed-action catalysts, such as POLYCAT SA-1 and POLYCAT SA-102, and other catalysts, such as triethylenediamine, and di-butyltin dilaurate.
Polyurethanes are typically divided into two categories: thermosets and thermoplastics. Thermoplastic polyurethanes are formed by the reaction of at least a diisocyanate, such as 4,4′-diphenylmethane diisocyanate or 3,3′-dimethyl-4,4′-biphenylene diisocyanate, and a polyol cured with a diol, such as 1,4-butanediol or a secondary diamine, such as Unilink 4200 or Clearlink 1000. Thermoset polyurethanes are formed by the reaction of a diisocyanate, such as 2,4-toluene diisocyanate or methylene-bis-4-cyclohexyl isocyanate, and a polyol which is cured with a polyamine (excluding secondary diamines), a triol such as trimethylol propane, or a tetrafunctional glycol, such as N,N,N′,N′-tetra-bis-2-hydroxypropyl ethylenediamine.
Since 1960, various companies have investigated the usefulness of polyurethane as a golf ball cover material. U.S. Pat. No. 4,123,061 teaches a golf ball made from a polyurethane prepolymer of polyether and a curing agent, such as a trifunctional polyol, a tetrafunctional polyol, or a diamine. U.S. Pat. No. 5,334,673 discloses the use of two categories of polyurethane available on the market, i.e., thermoset and thermoplastic polyurethanes, for forming golf ball covers and, in particular, thermoset polyurethane covered golf balls made from a composition of polyurethane prepolymer and a slow-reacting amine curing agent and/or a difunctional glycol. The first commercially successful polyurethane covered golf ball was the Titleist® Professional ball, first released in 1993.
Unlike SURLYN® covered golf balls, polyurethane golf ball covers can be formulated to possess the soft “feel” of balata covered golf balls. However, golf ball covers made from polyurethane have not, to date, fully matched SURLYN® golf balls with respect to resilience or the rebound of the golf ball cover, which is a function of the initial velocity of a golf ball after impact with a golf club.
U.S. Pat. No. 3,989,568 discloses a three-component system employing either one or two polyurethane prepolymers and one or two polyol or fast-reacting diamine curing agents. The reactants chosen for the system must have different rates of reactions within two or more competing reactions.
U.S. Pat. No. 4,123,061 discloses a golf ball made from a polyurethane prepolymer of polyether and a curing agent, such as a trifunctional polyol, a tetrafunctional polyol, or a fast-reacting diamine curing agent.
U.S. Pat. No. 5,334,673 discloses a golf ball cover made from a composition of a thermosetting polyurethane prepolymer and a slow-react

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoplastic polyurethane golf ball with improved resiliency does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoplastic polyurethane golf ball with improved resiliency, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoplastic polyurethane golf ball with improved resiliency will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182208

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.