Thermoelectric devices utilizing double-sided Peltier...

Batteries: thermoelectric and photoelectric – Thermoelectric – Peltier effect device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S205000, C136S212000, C062S003200, C062S003700

Reexamination Certificate

active

10413211

ABSTRACT:
A thermoelectric device and method of manufacturing the device, where thermoelectric elements of opposite conductivity type are located on respective opposing sides of a heat source member. Heat sinks are disposed on opposite sides of the thermoelectric elements. Peltier metal contacts are positioned between the thermoelectric elements and each of the heat source member and heat sinks. A plurality of devices may be arranged together in a thermally parallel, electrically series arrangement, or in a thermally parallel, electrically parallel arrangement. The arrangement of the elements allow the direction of current flow through the pairs of elements to be substantially the same as the direction of current flow through the metal contacts.

REFERENCES:
patent: 3136134 (1964-06-01), Smith
patent: 3296034 (1967-01-01), Reich
patent: 3607444 (1971-09-01), Debucs
patent: 3663307 (1972-05-01), Mole
patent: 4443650 (1984-04-01), Takagi et al.
patent: 5006178 (1991-04-01), Bijvoets
patent: 5254178 (1993-10-01), Yamada et al.
patent: 5430322 (1995-07-01), Koyanagi et al.
patent: 5837929 (1998-11-01), Adelman
patent: 5865975 (1999-02-01), Bishop
patent: 5869242 (1999-02-01), Kamb
patent: 5874219 (1999-02-01), Rava et al.
patent: 5900071 (1999-05-01), Harman
patent: 5922988 (1999-07-01), Nishimoto
patent: 6060331 (2000-05-01), Shakouri et al.
patent: 6060657 (2000-05-01), Harman
patent: 6062681 (2000-05-01), Field et al.
patent: 6071351 (2000-06-01), Venkatasubramanian
patent: 6072925 (2000-06-01), Sakata
patent: 6084050 (2000-07-01), Ooba et al.
patent: 6094919 (2000-08-01), Bhatia
patent: 6154266 (2000-11-01), Okamoto et al.
patent: 6154479 (2000-11-01), Yoshikawa et al.
patent: 6180351 (2001-01-01), Cattell
patent: 6271459 (2001-08-01), Yoo
patent: 6282907 (2001-09-01), Ghoshal
patent: 6300150 (2001-10-01), Venkatasubramanian
patent: 6347521 (2002-02-01), Kadotani et al.
patent: 6365821 (2002-04-01), Prasher
patent: 6367261 (2002-04-01), Marshall et al.
patent: 6384312 (2002-05-01), Ghoshal et al.
patent: 6403876 (2002-06-01), Ghoshal et al.
patent: 6410971 (2002-06-01), Otey
patent: 6412286 (2002-07-01), Park et al.
patent: 6505468 (2003-01-01), Venkatasubramanian
patent: 6605772 (2003-08-01), Harman et al.
patent: 6696635 (2004-02-01), Prasher
patent: 2001/0052234 (2001-12-01), Venkatasubramanian
patent: 2002/0053359 (2002-05-01), Harman et al.
patent: 2002/0069906 (2002-06-01), Macris
patent: 2002/0139123 (2002-10-01), Bell
patent: 0 687 020 (1995-12-01), None
patent: 0 805 501 (1997-11-01), None
patent: 6-97512 (1994-04-01), None
patent: 06097512 (1994-04-01), None
patent: WO98/43740 (1998-10-01), None
patent: WO98/44562 (1998-10-01), None
patent: WO 00/49664 (2000-08-01), None
patent: WO 01/08800 (2001-02-01), None
US 6,381,965, 05/2002, Ghoshal (withdrawn)
Oct. 9, 2001, RTI International,“New Thermoelectric Materials Can Keep Chips Cool Advances in Fiber Optics and in Biotechnology also are Likely”.
RTI International Annual Report 2001, Turning Knowledge into Practice, pp. 4-37.
Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Rama Venkatasubramanian et al., Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA, 2001 Macmillan Magazines Ltd., Nature, vol. 413, Oct. 11, 2001, www.nature.com pp. 597-602.
In-situ Monitoring of the Growth of Bi2Te3andSb2Te3Films and Bi2Te3-Sb2Te3Superlattice Using Spectroscopic Eillipsometry Hao Cui et al. Journal of Electronic Materials, vol. 30, No. 11 2001, Special Issue Paper, pp. 1376-1381.
Development of 20% Efficient GaInAsP Solar Cells, P,R. Sharps, et al., 1993 IEEE pp. 633-638.
Development of High-Efficiency A10.2Ga0.8As Solar Cells and Interconnect Schemes For Al0.2Ga0.3As/Si Mechanically-Stacked Cascade Cells, Rama Venkatasubramanian, et al., 1993 IEEE pp. 752-756.
Photoreflectance Characterization of InP and GaAs Solar Cells, R.G. Rodrigues et al., 1993 IEEE pp. 681-685.
Close-Packard Cell Arrays for Dish Concentrators, J.B. Lasich et al., Solar Research Corporation Pty. Ltd., 6 Luton Lane, Hawthorn, Victoria 3122, Australia and M. Timmons et al., Research Triangle Institute, RTP, USA, 1994 IEEE pp. 1938-1941.
GaAs and Al0.2Ga0.8As Solar Cells With An Indirect-Bandgap Al0.8Ga0.2As Emitter—Heterojunction Cells, Rama Venkatasubramanian et al., Research Triangle Institute, RTP, NC 27709, H. Field and K. Emery, National Renewable Energy Laboratory (NREL), Golden, CO 80401, First WCPEC; Dec. 5-9, 1994; Hawaii, pp. 1839-1842.
The Growth and Radiation Response of N+p Deep Homojunction InP Solar Cells, M.J. Panunto et al., M.L. Timmons, et al., First WCPEC; Dec. 5-9, 1994; Hawaii, pp. 2192-2195.
Material and Device Characterization Toward High-Efficiency GaAs Solar Cells on Optical-Grade Polycrystalline Ge Substrates, Rama Venkatasubramanian, et al, R. Ahrenkiel et al., First WCPEC; Dec. 5-9, 1994; Hawaii, 1994 IEEE pp. 1692-1696.
Silicon and GAAS/GE Concentrator Power Plants: A Comparison of Cost of Energy Produced, R.A. Whisnant et al., First WCPEC; Dec. 5-9, 1994; Hawaii, 1994 IEEE pp. 1103-1106.
Compensation Mechanisms in N+-GaAs Doped With Silicon, Rama Venkatasubramanian, et al., Electrical Computer, and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USA, Journal of Crystal Growth 94 (1989) pp. 34-40.
High-Efficiency Tandem Solar Cells on Single- and Poly-Crystalline Substrates, J.A. Hutchby et al., Center for Semiconductor Research, Research Triangle Institute, Research Triangle Park, NC 27709, USA, Solar Energy Materials and Solar Cells 35 (1994) pp. 9-24.
Optoelectronic Properties of Eutectic-Metal-Bonded (EMB) GaAs-AlGaAs Structures on Si Substrates, Rama Venkatasubramanian, et al.,Solid-State Electronics vol. 37, No. 11, pp. 1809-1815, 1994.
Heteroepitaxy and Characterization of Ge-rich SiGe Alloys on GaAs, Rama Venkatasubramanian et al., J. Appl. Phys., vol. 69, No. 12, Jun. 15, 1991, pp. 8164-8167.
18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-Grade Polycrystalline Ge Substrate, Rama Venkatasubramanian et al., 25thPVSC; May 13-17, 1996; Washington, D.C. 1996 IEEE pp. 31-36.
Experimental Evidence of High Power Factors and Low Thermal Conductivity in Bi2Te./SB2Te3Superlattice Thin-Films, Rama Venkatasubramanian et al., Research Triangle Institute, Research Triangle Park, NC 27709, USA, 15thInternational Conference on Thermoelectrics, 1996 IEEE pp. 454-458.
Thermal Conductivity of Si-Ge Superlattices, S.-M. Lee and David G. Cahilla), Rama Venkatasubramanian, Appl. Phys. Lett. vol. 70, No. 22, Jun. 2, 1997, pp. 2957-2959.
20% (AM1.5) Efficiency GaAs Solar Cells on Sub-mm Grain-Size Poly-Ge And Its Transition to Low-Cost Substrates, Rama Venkatasubramanian et al., 26thPVSC; Sep. 30-Oct. 3, 1997; Anaheim, CA 1997 IEEE. pp. 811-814.
Electronic and Mechanical Properties of Ge Films Grown on Glass Substrates, R.K. Ahrenkiel et al., 26thPVSC; Sep. 30-Oct. 3, 1997; Anaheim, CA, pp. 527-529.
MOCVD of Bi2Te3and Their Superlattice Structures for Thin-Film Thermoelectric Applications, Rama Venkatasubramanian et al., Journal of Crystal Growth 170 (1997), pp. 817-821.
A Silent Cool: Thermoelectrics May Offer New Ways to Refrigerate and Generate Power, Corinna Wu, Science News, Sep. 6, 1997 v152 n10 p152(2), pp. 1-3.
ONR Contributes to Thermoelectric Research (Office of Naval Research) (Brief Article), Ozone Depletion Network Online Today, Contact ONR, website http://www.onr.navy.mil., Nov. 2001.
In-Plane Thermoelectric Properties of Freestanding Si/Ge Superlattice Strucures, Rama Venkatasubramanian et al., 17thInternational Conference on Thermoelectrics (1998), pp. 191-197.
Potential of Si-based Superlattice Thermoelectric Materials for Integration with Si Microelectronics, Rama Venkatasubramanian et al., 1998 IEEE, p. 869.
Low-temperature Organometallic Epitaxy and Its Application to Superlattice Structures in Thermoelectrics, Rama Venkatasubramanian,a), et al., Sandra Liu and Nadia El-Masry, Michael Lamvik, Applied Physics Letters, vol. 75, No. 8, Aug. 23, 1999, pp. 1104-1106.
Optical Constants of Bi2Te3and Sb2Te3Measured Using Sp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoelectric devices utilizing double-sided Peltier... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoelectric devices utilizing double-sided Peltier..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoelectric devices utilizing double-sided Peltier... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3829565

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.