Thermoelectric device assembly and method for fabrication of...

Batteries: thermoelectric and photoelectric – Thermoelectric – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C136S203000, C136S205000, C427S058000, C065S059100, C065S059500, C438S118000, C438S127000, C438S054000, C438S055000

Reexamination Certificate

active

06492585

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to solid state devices and, more particularly, to thermoelectric devices and the fabrication of same using metal filled glass.
2. Description of the Related Art
The basic theory and operation of thermoelectric devices has been developed for many years. Modern thermoelectric devices typically include an array of semiconductor elements or thermocouples which operate by using the Peltier effect. Thermoelectric devices are essentially small heat pumps which follow the laws of thermodynamics in the same manner as mechanical heat pumps, refrigerators, or any other apparatus used to transfer thermal energy. A principal difference is that thermoelectric devices function with solid state electrical components (thermocouples) as compared to more traditional mechanical/fluid heating and cooling components. The efficiency of a thermoelectric device is generally limited to its associated Carnot cycle efficiency reduced by a factor which is dependent upon the thermoelectric figure of merit (ZT) of the materials used in fabrication of the thermoelectric device.
The thermoelectric figure of merit (ZT) is a dimensionless measure of the effectiveness of a thermoelectric device and is related to material properties by the following equation:
ZT=S
2
&sgr;T/&kgr;
  (1)
where S, &sgr;, &kgr;, and T are the Seebeck coefficient, electrical conductivity, thermal conductivity and absolute temperature, respectively. The Seebeck coefficient (S) is a measure of how readily the respective carriers (electrons or holes) can change energy in a temperature gradient as they move across a thermoelectric element. The thermoelectric figure of merit is related to the strength of interaction of charge carriers with the lattice structure and the available energy states associated with the respective materials.
The ZT may also be stated by the equation:
ZT
=
S
2

T
ρ



κ
(
2
)
&rgr;=electrical resistivity
&sgr;=electrical conductivity electrical conductivity=1/electrical resistivity or
&sgr;=1/&rgr;
Today's commercially available thermoelectric materials are generally limited to use in a temperature range between 100° K and 1100° K with a maximum ZT value of approximately one. The efficiency of such thermoelectric power generation devices remains relatively low at approximately five to eight percent (5-8%) energy conversion efficiency. For the temperature range of −100° C. to 1000° C., maximum ZT of conventional thermoelectric materials remains limited to values of approximately one (1), except for Te—Ag—Ge—Sb alloys (TAGS) which may achieve a ZT of 1.2 to 1.4 in a very narrow temperature range. Recently developed materials such as Si
80
Ge
20
alloys used in thermoelectric generators to power spacecraft for deep space missions have a average thermoelectric figure of merit over the temperature range of operation of approximately 0.5 from 100° C. to 1,000° C.
Thermoelectric cooling and temperature stabilization devices are constructed by positioning semiconductor elements made from such semiconductor alloy families as Bi
2
Te
3
, Sb
2
Te
3
and Bi
2
Se
3
between ceramic plates. These semiconductor elements are doped to create either an excess (n-type) or a deficiency (p-type) of electrons. Typical thermoelectric devices of this type are described in U.S. Pat. No. 4,855,810, Gelb et al. According to Gelb et al., these thermoelectric cooling devices contain semiconductor elements soldered to conductors using a solder including bismuth and tin and, in higher temperature applications, gold. One such bismuth tin solder is described in U.S. Pat. No. 3,079,455, Haba. Haba describes a solder formed of tin, antimony, and bismuth.
Thermoelectric devices built with elements composed of bismuth telluride alloy materials are used in applications where they are exposed to temperatures ranging from about −80° C. to about 250° C. The performance of such thermoelectric devices made with a tin-containing solder suffers as a result of long term exposure to wide temperature ranges. In fact, the performance of the thermoelectric devices has been found to decrease about fifteen percent or more per year. Thermoelectric devices made with tin-containing solder are not truly considered serviceable at temperatures substantially above 80° C.
One reason for the lack of serviceability is that the standard bismuth tin solder melts at 138° C. At temperatures above 80° C., the tin in the solder tends to diffuse rapidly into the semiconductor elements and into the crystal lattice of the semiconductor elements, where it acts as a dopant or reacts with material of the elements. Also, the tin forms a film over the surface of the material adjacent to the soldered ends. Once created, the tin film acts as a resistor connected across the elements causing a voltage drop or a short.
Gelb et al. sought to overcome the problems of tin diffusion and resistor formation by replacing the tin-based solder with a lead-antimony solder. However, at elevated temperatures, lead also diffuses and reacts with the thermoelectric semiconductor material to form a region of poor thermoelectric performance.
To prevent diffusion of lead, tin, or other metals from the solder or the copper when used as the interconnect between the elements, the industry standard has been to employ a diffusion barrier between the elements and the solder, such as nickel layered on the elements. Such a system is shown, for example, in U.S. Pat. No. 5,429,680, Fuschetti. However, this technology is very complicated, costly, and does not completely prevent diffusion of the lead, tin or other materials. Furthermore, thermoelectric devices made from material covered at the ends with metal films provide a point of relative weakness and can become a limiting factor in the service life of the device without careful engineering and testing.
BRIEF SUMMARY OF THE INVENTION
In accordance with the teachings of the present invention, a solderless thermoelectric device and method of fabrication are provided.
In one embodiment, the present invention provides a thermoelectric device having a first and a second plate, each plate having a first and second surface. A plurality of interconnects between the elements are operably coupled to the first and second plates to allow the device to be coupled to a power source. An array of thermoelectric elements, having respective first and second ends is preferably disposed between the first plate and the second plate. Metal filled glass (a specific example of metal filled glass, although not limited to, is silver-filled glass) is preferably used to respectively couple the first surface of the first plate and the first ends of the thermoelectric elements and the second ends of the thermoelectric elements to the first surface of the second plate. In this embodiment the metal filled glass replaces the solder traditionally used in this type of device.
In another embodiment, the present invention provides a thermoelectric device having at least one array of alternatively positioned n-type and p-type thermoelectric elements. Each thermoelectric element has a first end and a second end. A plurality of metal filled glass interconnects are provided to connect the first ends of adjacent n-type and p-type thermoelectric elements in series and the second ends of adjacent n-type and p-type thermoelectric elements in series and to subsequently connect the array of n-type and p-type thermoelectric elements in a serpentine manner. First and second leads are operably coupled to the thermoelectric element array and a first and a second plate are preferably operably coupled to the first and second ends of the thermoelectric elements. In this embodiment, the thermoelectric elements will not require diffusion barriers of nickel or other materials.
In yet another embodiment, the present invention provides a method of fabricating a thermoelectric device. The method includes applying metal filled glass in a desired pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermoelectric device assembly and method for fabrication of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermoelectric device assembly and method for fabrication of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermoelectric device assembly and method for fabrication of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2979172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.