Thermocatalytic process for CO2-free production of hydrogen...

Chemistry: electrical current producing apparatus – product – and – Having magnetic field feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S44500R, C423S650000, C423S651000

Reexamination Certificate

active

06670058

ABSTRACT:

BACKGROUND AND PRIOR ART
In the near- to medium-term future hydrogen production will continue to rely on fossil fuels, primarily, natural gas (NG). On the other hand, conventional hydrogen production processes are among major sources of anthropogenic CO
2
emissions into the atmosphere. In principle, hydrogen can be produced from hydrocarbon fuels via oxidative and non-oxidative conversion processes. Oxidative conversion involves the reaction of hydrocarbons with oxidants: water, oxygen, or combination of water and oxygen (steam reforming, partial oxidation and autothermal reforming processes, respectively). As a first step, these processes produce a mixture of hydrogen with carbon monoxide (synthesis-gas), which is followed by gas conditioning (water gas shift and preferential oxidation reactions) and CO
2
removal stages. The total CO
2
emissions from these processes (including stack gases) reaches up to 0.4 m
3
per each m
3
of hydrogen produced. Non-oxidative route includes thermal decomposition (TD) (or dissociation, pyrolysis, cracking) of hydrocarbons into hydrogen and carbon.
TD of natural gas has been practiced for decades as a means of production of carbon black with hydrogen being a supplementary fuel for the process (Thermal Black process). In this process hydrocarbon stream was pyrolyzed at high temperature (1400° C.) over the preheated contact (firebrick) into hydrogen and carbon black particles. The process was employed in a semi-continuous (cyclic) mode using two tandem reactors. U.S. Pat. No. 2,926,073 to P. Robinson et al. describes the improved apparatus for making carbon black and hydrogen from hydrocarbons by continuous thermal decomposition process. Kvaemer Company of Norway has developed a methane decomposition process which produces hydrogen and carbon black by using high temperature plasma (CB&H process disclosed in the Proc. 12
th
World Hydrogen Energy Conference, Buenos Aires, 697, 1998). The advantages of the plasmochemical process are high thermal efficiency (>90%) and purity of hydrogen (98 v. %), however, it is an electric energy intensive process. Steinberg et al. proposed a methane decomposition reactor consisting of a molten metal bath (Int. J. Hydrogen Energy, 24, 771, 1999). Methane bubbles through molten tin or copper bath at high temperatures (900° C. and higher). The advantages of this system are: an efficient heat transfer to a methane gas stream, and, ease of carbon separation from the liquid metal surface by density difference. A high temperature, regenerative gas heater for hydrogen and carbon production from NG has been developed by Spilrain et al. (Int. J. Hydrogen Energy, 24, 613, 1999). In this process, thermal decomposition of NG was conducted in the presence of a carrier gas (N
2
or H
2
) which was pre-heated to 1627-1727° C. in the matrix of a regenerative gas heater.
There have been attempts to use catalysts to reduce the maximum temperature of the TD of methane. Transition metals were found to be very active in methane decomposition reaction; however, there was a catalyst deactivation problem due to carbon build up on the catalyst surface. In most cases, surface carbon deposits were combusted by air to regenerate the original catalytic activity. As a result, all carbon was converted into CO
2
, and hydrogen was the only useful reaction product. For example, Callahan describes a catalytic reactor (fuel conditioner) designed to catalytically convert methane and other hydrocarbons to hydrogen for fuel cell applications (Proc. 26th Power Sources Symp. Red Bank, N.J., 181, 1974). A stream of gaseous fuel entered one of two reactor beds, where hydrocarbon decomposition to hydrogen took place at 870-980° C. and carbon was deposited on the Ni-catalyst. Simultaneously, air entered the second reactor where the catalyst regeneration occurred by burning coke off the catalyst surface. The streams of fuel and air were reversed for another cycle of decomposition-regeneration. The reported process did not require water gas shift and gas separation stages, which was a significant advantage. However, due to cyclic nature of the process, hydrogen was contaminated with carbon oxides. Furthermore, no byproduct carbon was produced in this process. U.S. Pat. No. 3,284,161 to Pohlenz et al. describes a process for continuous production of hydrogen by catalytic decomposition of a gaseous hydrocarbon streams. Methane decomposition was carried out in a fluidized bed catalytic reactor in the range of temperatures from 815 to 1093° C. Supported Ni, Fe and Co catalysts (preferably Ni/Al
2
O
3
) were used in the process. The coked catalyst was continuously removed from the reactor to the regeneration section where carbon was burned off, and the regenerated catalyst was recycled to the reactor. U.S. Pat. No. 2,476,729 to Helmers et al. describes the improved method for catalytic cracking of hydrocarbon oils. It was suggested that air is added to the feedstock to partially combust the feed such that the heat supplied is uniformly distributed throughout the catalyst bed. This, however, would contaminate and dilute hydrogen with carbon oxides and nitrogen.
Use of carbon catalysts offers the following advantages over metal catalysts: (i) no need for the regeneration of catalysts by burning carbon off the catalyst surface; (ii) no contamination of hydrogen by carbon oxides; and, (iii) carbon is produced as a valuable byproduct of the process. Earlier, Muradov has reported on the feasibility of using different carbon catalysts for methane decomposition reaction (Proc. 12
th
World Hydrogen Conf., Buenos Aires, Argentina, 1998). It has also been taught to thermally decompose hydrocarbon feedstock over carbon particles acting as a heat carrier. U.S. Pat. No. 2,805,177 to Krebs describes a process for producing hydrogen and product coke via contacting a heavy hydrocarbon oil admixed with a gaseous hydrocarbon with fluidized coke particles in a reaction zone at 927-1371° C. Gaseous products containing at least 70 v. % of hydrogen were separated from the coke, and a portion of coke particles was burnt to supply heat for the process; the remaining portion of coke was withdrawn as a product. U.S. Pat. No. 4,056,602 to Matovich deals with high temperature thermal reactions, including the decomposition of hydrocarbons, by utilizing fluid wall reactors. Thermal decomposition of methane was conducted at 1260-1871° C. utilizing carbon black particles as adsorbents of high flux radiation energy, and initiators of the pyrolytic dissociation of methane. It was reported that 100% conversion of methane could be achieved at 1815° C. at a wide range of flow rates (28.3-141.5 l/min). U.S. Pat. No. 5,650,132 to Murata et al. produces hydrogen from methane and other hydrocarbons by contacting them with fine particles of a carbonaceous material obtained by arc discharge between carbon electrodes and having an external surface area of at least 1 m
2
/g. Carbonaceous materials also included: soot obtained from the thermal decomposition of different organic compounds or the combustion of fuels; carbon nanotubes; activated charcoal; fullerenes C
60
or C
70
; and, finely divided diamond. The optimal conditions for methane conversion included: methane dilution with an inert gas (preferable methane concentration: 0.8-5% by volume); A temperature range of 400-1,200° C.; and residence times of −50 sec. An increase in methane concentration in feedstock from 1.8 to 8 v. % resulted in a drastic drop in methane conversion from 64.6 to 9.7% (at 950° C.). It was also stated that during hydrocarbon pyrolysis (the experiments usually ran for 30 min) the carbon samples gradually lost their catalytic activity. It was suggested that oxidizing gases like H
2
O or CO
2
be added to the pyrolyzing zone to improve the catalyst life. However, this would inevitably contaminate hydrogen with carbon oxides and require an additional purification step. Also, it was suggested that the spent catalyst be combusted, which would be, however, very wasteful, especially, considering the high cost of the carb

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermocatalytic process for CO2-free production of hydrogen... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermocatalytic process for CO2-free production of hydrogen..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermocatalytic process for CO2-free production of hydrogen... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144540

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.