Thermally stable polymers, method of preparation, and...

Stock material or miscellaneous articles – Composite – Of polyamidoester

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S035800, C428S035900, C428S323000, C428S327000, C428S380000, C525S133000, C525S191000, C528S194000, C528S196000, C528S198000

Reexamination Certificate

active

06689474

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to thermally stable, polymers comprising polyester chain members derived from at least one 1,3-dihydroxybenzene moiety and at least one aromatic dicarboxylic acid moiety (often referred to hereinafter as resorcinol arylate chain members), a method for their preparation, and multilayer articles made therefrom.
Various polymeric articles have a problem of long term color instability. In many cases this instability is seen as yellowing of the polymer, detracting from its attractiveness and also transparency when the polymer was initially transparent. Loss of gloss can also be an undesirable long term phenomenon.
Yellowing of polymers is often caused by the action of ultraviolet radiation, and such yellowing is frequently designated “photoyellowing”. Numerous means for suppressing photoyellowing have been employed and proposed. Many of these involve incorporation in the polymer of ultraviolet absorbing compounds (UVA's). For the most part, UVA's are low molecular weight compounds, which must be employed at relatively low levels, typically up to 1% by weight, to avoid degradation of the physical properties of the polymer such as impact strength and high temperature properties as reflected in heat distortion temperature. Another problem of concern with polymers such as aromatic polycarbonates and addition polymers of alkenylaromatic compounds such as styrene is susceptibility to attack by organic liquids.
One way of protecting a resinous article against photoyellowing and loss of gloss is to apply a coating of a weatherable second polymer, the term “weatherable” as used herein signifying resistance to such phenomena. Coatings made from polyesters containing resorcinol arylate units often possess good weatherability properties. The arylate moieties typically contain isophthalate, terephthalate, and especially mixtures of iso- and terephthalate units. Polyesters of resorcinol with mixtures of isophthalate and terephthalate chain members typically have good weatherability properties and may provide protection against photoyellowing when coated over a resinous substrate.
The good weatherability properties of polyesters containing resorcinol arylate units are believed to arise in large part from the screening effect said polymers may provide to ultraviolet (UV) light. On exposure to UV light polymers comprising resorcinol arylate chain members may undergo photochemical Fries rearrangement converting at least a portion of the polymer from polyester chain members to o-hydroxybenzophenone-type chain members. The o-hydroxybenzophenone-type chain members act to screen further UV light and protect UV-sensitive components in a resorcinol arylate-containing composition. The good weatherability properties of polymers comprising resorcinol arylate chain members make them especially useful in blends and in multilayer articles in which said polymers may act as a protecting layer for more sensitive substrate components.
Copolyesters comprising resorcinol iso- and terephthalate polyester chain members in combination with diacid or diol alkylene chain members (so-called “soft-block” chain members) are disclosed in commonly owned U.S. Pat. No. 5,916,997. These copolymers have excellent weatherability and flexibility. Copolyestercarbonates comprising resorcinol iso- and terephthalate polyester chain members in combination with carbonate chain members are disclosed in commonly owned, co-pending application Ser. No. 09/416,529, filed Oct. 12, 1999. These copolymers have excellent weatherability and are compatible with polycarbonates in blends.
Polyesters containing resorcinol arylate chain members have been prepared by melt methods as disclosed in U.S. Pat. No. 4,127,560 and in Japanese Kokai 1/201,326. The methods may provide polyesters containing isophthalate and terephthalate chain members but do not allow the incorporation of greater than 30 mole % terephthalate. In addition, the polyesters obtained have unacceptable color.
Polyesters containing resorcinol arylate chain members have also been prepared by an interfacial method. The interfacial method comprises a solvent mixture containing water and at least one organic solvent substantially immiscible with water. According to U.S. Pat. No. 3,460,961 and Eareckson, Journal of Polymer Science, vol. XL, pp. 399-406 (1959), preparation of resorcinol arylate polyesters with a mixture of iso- and terephthalate chain members is performed by an interfacial method in water and a water-immiscible solvent such as chloroform or dichloromethane using 1:1 stoichiometric ratio of resorcinol to either iso- or terephthaloyl dichloride; or a mixture thereof, in the presence of aqueous sodium hydroxide. The resorcinol is combined with the aqueous sodium hydroxide before addition of acid chlorides, and the reaction is run at pH which is initially high but which decreases as the reaction proceeds. The molecular weight of the polymers is not controlled. The method provides polymer with very high weight average molecular weight (Mw), making the polymer unsuitable for some applications. Furthermore, the polymer has poor thermal stability and loses molecular weight upon thermal treatment.
Multilayer articles containing layers made from resorcinol arylate-containing polyester have been described by Cohen et al., Journal of Polymer Science : Part A-1, vol. 9, 3263-3299 (1971) and in U.S. Pat. No. 3,460,961. The polyester was made either in solution or by an interfacial process. The solution method requires the use of a stoichiometric amount of an organic base, such as a tertiary amine, which must be isolated and recovered for reuse in any economical, environmentally friendly process. Both methods produce thermally unstable polyester which can only be applied by solution coating followed by evaporation of the solvent to make a multilayer article. This solution coating method has numerous deficiencies, some of which are mentioned in the Cohen et al. paper at page 3267: namely, the necessity to use high priced and toxic solvents, the inherently low concentration of the arylate polymer in the solvent and the tendency of the solutions to gel. Accordingly, the described polyesters were considered “unacceptable coating candidates”.
Japanese Kokai 1/199,841 discloses articles having a substrate layer comprising at least 90 mole percent poly(ethylene terephthalate) and a gas barrier coating layer which is a polyester of resorcinol and a minimum of 50 mole % isophthalic acid, optionally with copolyester units derived from another dicarboxylic acid such as terephthalic acid, naphthalenedicarboxylic acid or various other specifically named dicarboxylic acids. The disclosed articles may be prepared by a series of operations including co-injection molding. However, the only types of articles disclosed are bottles, which are produced from a co-injection molded parison by subsequent blow molding. Larger articles, such as external automobile body parts, are not disclosed and no method for their production is suggested, nor are articles in which the substrate layer is anything other than poly(ethylene terephthalate). In addition, the resorcinol isophthalate polyesters were prepared either by melt methods which do not allow the incorporation of greater than 30 mole % terephthalate and give polyester with unacceptable color, or by the interfacial method which produces thermally unstable polyester.
It remains of interest, therefore, to develop a method for preparing weatherable, solvent resistant multilayer articles which are capable of use for such varied purposes as body parts for outdoor vehicles and devices such as automobiles. There is also a particular need for polymers comprising resorcinol arylate chain members having controlled molecular weight, high thermal stability, and low color. There is also a particular need for polymers comprising resorcinol arylate chain members that can be processed using typical melt processing techniques.
BRIEF SUMMARY OF THE INVENTION
The present inventors have identified the primary source of poor th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermally stable polymers, method of preparation, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermally stable polymers, method of preparation, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermally stable polymers, method of preparation, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3319929

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.