Explosive and thermic compositions or charges – Containing free boron or binary compounds of boron or boranes
Reexamination Certificate
1997-05-05
2001-10-23
Carone, Michael J. (Department: 3644)
Explosive and thermic compositions or charges
Containing free boron or binary compounds of boron or boranes
Reexamination Certificate
active
06306232
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to nontoxic gas generating compositions are described that upon combustion, rapidly generate gases that are useful for inflating occupant safety restraints in motor vehicles and specifically, the invention relates to thermally stable nonazide gas generants having not only acceptable burn rates, but that also, upon combustion, exhibit a relatively high gas volume to solid particulate ratio at acceptable flame temperatures.
The evolution from azide-based gas generants to nonazide gas generants is well-documented in the prior art. The advantages of nonazide gas generant compositions in comparison with azide gas generants have been extensively described in the patent literature, for example, U.S. Pat. Nos. 4,370,181; 4,909,549; 4,948,439; 5,084,118; 5,139,588 and 5,035,757, the discussions of which are hereby incorporated by reference.
In addition to a fuel constituent, pyrotechnic nonazide gas generants contain ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates. Other optional additives, such as burning rate enhancers or ballistic modifiers and ignition aids, are used to control the ignitability and combustion properties of the gas generant.
One of the disadvantages of known nonazide gas generant compositions is the amount and physical nature of the solid residues formed during combustion. The solids produced as a result of combustion must be filtered and otherwise kept away from contact with the occupants of the vehicle. It is therefore highly desirable to develop compositions that produce a minimum of solid particulates while still providing adequate quantities of a nontoxic gas to inflate the safety device at a high rate.
The use of phase stabilized ammonium nitrate is desirable because it generates abundant nontoxic gases and minimal solids upon combustion. To be useful, however, gas generants for automotive applications must be thermally stable when aged for 400 hours or more at 107° C. The compositions must also retain structural integrity when cycled between −40° C. and 107° C.
Often, gas generant compositions incorporating phase stabilized or pure ammonium nitrate exhibit poor thermal stability, and produce unacceptably high levels of toxic gases, CO and NO
x
for example, depending on the composition of the associated additives such as plasticizers and binders. In addition, ammonium nitrate contributes to poor ignitability, lower burn rates, and performance variability. Several known gas generant compositions incorporating ammonium nitrate utilize well known ignition aids such as BKNO
3
to solve this problem. However, the addition of an ignition aid such as BKNO
3
is undesirable because it is a highly sensitive and energetic compound, and furthermore, contributes to thermal instability and an increase in the amount of solids produced.
Certain gas generant compositions comprised of ammonium nitrate are thermally stable, but have burn rates less than desirable for use in gas inflators. To be useful for passenger restraint inflator applications, gas generant compositions generally require a burn rate of at least 0.4 inch/second (ips) or more at 1000 psi. Gas generants with burn rates of less than 0.40 ips at 1000 psi do not ignite reliably and often result in “no-fires” in the inflator.
Yet another problem that must be addressed is that the U.S. Department of Transportation (DOT) regulations require “cap testing” for gas generants. Because of the sensitivity to detonation of fuels often used in conjunction with ammonium nitrate, most propellants incorporating ammonium nitrate do not pass the cap test unless shaped into large disks, which in turn reduces design flexibility of the inflator.
Accordingly, many nonazide propellants based on ammonium nitrate cannot meet requirements for automotive applications.
2. Description of the Related Art
A description of the related art follows, the complete teachings of which are herein incorporated by reference.
U.S. Pat. No. 5,545,272 to Poole discloses the use of gas generant compositions consisting of nitroguanidine (NQ), at a weight percent of 35%-55%, and phase stabilized ammonium nitrate (PSAN) at a weight percent of 45%-65%. NQ, as a fuel, is preferred because it generates abundant gases and yet consists of very little carbon or oxygen, both of which contribute to higher levels of CO and NOx in the combustion gases. According to Poole, the use of phase stabilized ammonium nitrate (PSAN) or pure ammonium nitrate is problematic because many gas generant compositions containing the oxidizer are thermally unstable. Poole has found that combining NQ and PSAN in the percentages given results in thermally stable gas generant compositions. However, Poole reports burn rates of only 0.32-0.34 inch per second, at 1000 psi. As is well known, burn rates below 0.4 inch per second at 1000 psi are simply too low for confident use within an inflator.
In U.S. Pat. No. 5,531,941 to Poole, Poole teaches the use of PSAN, and two or more fuels selected from a specified group of nonazide fuels. Poole adds that gas generants using ammonium nitrate (AN) as the oxidizer are generally very slow burning with burning rates at 1000 psi typically less than 0.1 inch per second. He further teaches that for air bag applications, burning rates of less than about 0.4 to 0.5 inch per second are difficult to use. The use of PSAN is taught as desirable because of its propensity to produce abundant gases and minimal solids, with minimal noxious gases. Nevertheless, Poole recognizes the problem of low burn rates and thus combines PSAN with a fuel component containing a majority of TAGN, and if desired one or more additional fuels. The addition of TAGN increases the burn rate of ammonium nitrate mixtures. According to Poole, TAGN/PSAN compositions exhibit acceptable burn rates of 0.59-0.83 inch/per second. TAGN, however, is a sensitive explosive that poses safety concerns in processing and handling. In addition, TAGN is classified as “forbidden” by the Department of Transportation, therefore complicating raw material requirements.
In U.S. Pat. No. 5,500,059 to Lund et al., Lund states that burn rates in excess of 0.5 inch per second (ips) at 1,000 psi, and preferably in the range of from about 1.0 ips to about 1.2 ips at 1,000 psi, are generally desired. Lund discloses gas generant compositions comprised of a 5aminotetrazole fuel and a metallic oxidizer component. The use of a metallic oxidizer reduces the amount of gas liberated per gram of gas generant, however, and increases the amount of solids generated upon combustion.
The gas generant compositions described in Poole et al, U.S. Pat. Nos. 4,909,549 and 4,948,439, use tetrazole or triazole compounds in combination with metal oxides and oxidizer compounds (alkali metal, alkaline earth metal, and pure ammonium nitrates or perchlorates) resulting in a relatively unstable generant that decomposes at low temperatures. Significant toxic emissions and particulate are formed upon combustion. Both patents teach the use of BKNO
3
as an ignition aid.
The gas generant compositions described in Poole, U.S. Pat. No. 5,035,757, result in more easily filterable solid products but the gas yield is unsatisfactory.
Chang et al, U.S. Pat. No. 3,954,528, describes the use of TAGN and a synthetic polymeric binder in combination with an oxidizing material. The oxidizing materials include pure AN although, the use of PSAN is not suggested. The patent teaches the preparation of propellants for use in guns or other devices where large amounts of carbon monoxide, nitrogen oxides, and hydrogen are acceptable and desirable. Because of the practical applications involved, thermal stability is not considered a
Burns Sean P.
Khandhadia Paresh S.
Automotive Systems Laboratory Inc.
Begin Laurence C.
Carone Michael J.
Dinnin & Dunn PC
Palo Francis T.
LandOfFree
Thermally stable nonazide automotive airbag propellants does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thermally stable nonazide automotive airbag propellants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermally stable nonazide automotive airbag propellants will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2596441