Wave transmission lines and networks – Coupling networks – Frequency domain filters utilizing only lumped parameters
Reexamination Certificate
2001-12-19
2004-08-31
Pascal, Robert (Department: 2817)
Wave transmission lines and networks
Coupling networks
Frequency domain filters utilizing only lumped parameters
C216S006000, C428S195100
Reexamination Certificate
active
06784761
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a thermal transfer sheet, a thermal transfer recording method, and a thermal transfer recording system and, more particularly, it relates to a thermal transfer sheet, a thermal transfer recording method, and a thermal transfer recording system, which can regulate a printer so as to limit the use to authentic thermal transfer sheets which received an approval of the quality assurance by a printer manufacturer or the like so that the appropriate printing can be performed in a printer, and which can prevent deterioration of the printing quality and deterioration of a thermal head.
The present invention also relates to a resonance circuit and, more particularly, it relates to a resonance circuit which makes a resonance with a high-frequency wave (electromagnetic wave and the like) and in which an electrically-conductive ink layer is formed in a pattern of the circuit on both sides of an dielectric material by a thermal transfer process, and relates to a process for producing the same.
The resonance circuit and a process for producing the same which are provided by the present invention can be applied to the general uses for a resonance circuit and are suitable, in particular, for the aforementioned thermal transfer sheet imparted with an approval information, and a recording method and a recording system which use the thermal transfer sheet.
2. Description of the Related Art
As a thermal transfer recording medium used for thermal printers, facsimiles and the like, there have been hitherto used thermal transfer sheets in which a thermally transferable layer of a heat meltable ink layer or a sublimation dye layer is provided on one side of a substrate film.
The conventional thermal transfer sheets are the sheets on which a heat meltable ink layer or a sublimation dye layer is provided thereon by using, as a substrate film, a paper such as a condenser paper and a paraffin paper having the thickness of around 10 to 20 &mgr;m or a plastic film such as polyester and cellophane having the thickness of around 3 to 20 &mgr;m and coating on this substrate film a heat meltable ink obtained by mixing a wax with a colorant such as a pigment, a dye and the like or an ink obtained by dispersing or dissolving a sublimation dye in a resin binder.
And printing is performed by heating and pressing predetermined portions by means of a thermal head from a rear side of the substrate film to melt or sublimate an ink layer located corresponding to a printing part among a heat meltable ink layer or a sublimation dye layer and, which is thereby transferred to a printing paper.
In addition, there are generally used continuous thermal transfer sheets in a rolled up form obtained by rolling up on a supply bobbin and adhering an front end of the thermal transfer sheet to a rolling up bobbin. And thermal transfer sheets are contained in a thermal transfer sheet cassette in many cases and are exchanged with a thermal transfer sheet cassette at the end of use of the thermal transfer sheet and recently, however, users simply exchange thermal transfer sheets and cassettes are reused from a viewpoint of the reuse of resources and the like.
In addition, thermal transfer recording media are generally used by rolling up a thermal transfer sheet, connecting a lead film to an end of the final rolling up of the thermal transfer sheet, and adhering an end of the lead film to a reeling up bobbin, which is mounted on a printer. The lead film exerts respective functions such as guidance and pulling up of a thermal transfer sheet which is first used, protection of a rolled unused thermal transfer sheet from the outside the rolling, improvement of the workability and accuracy of mounting when a thermal transfer sheet is mounted on a cassette or directly on a printer, and removal of crease upon rolling up a thermal transfer sheet after use (See JP-A(Kokai)-Hei-6-336065, JP-A-Hei-9(Kokai)-272247 and the like).
In addition, there is disclosed a cassette for a thermal transfer sheet in which a displaying label of the number on which information regarding the number of recordable image planes of the thermal transfer sheet is recorded is applied to a front end of the thermal transfer sheet without connecting a lead film to the thermal transfer sheet (JP-A(Kokai)-Sho-63-68452).
Furthermore, there is disclosed such a thermal transfer sheet cassette that it is not misused in a printer, a light diffracting structure on which information for printing is recorded as a light diffraction image is provided in order to prevent forgery, the surface of the light diffracting structure is formed to be on the same level of that of the cassette case or on the more recessed level than that of the case surface, and the light diffracting structure having the fragility is used (JP-A(Kokai)-Hei-8-318657, JP-A(Kokai)-Hei-8-318658).
There are many kinds of thermal transfer printers and required to have the excellent printing quality such as the clearness of a printed image, high density, high sensitivity and the like. To the contrary, an amount of a thermal transfer sheet to be used in a printer has been increased and many products which did not received an approval of the quality assurance by printer manufacturers or the like, that is, a thermal transfer sheet which is not authentic called as a pirated article are on the market.
When this pirated article is used in a printer, it is inferior in the matching properties with the printer, and deterioration of the printing quality and deterioration of a thermal head occur frequently, leading to problems.
However, in the thermal transfer sheet with the lead film as described above, the misuse can be prevented and operations can be made easy upon mounting on a printer, but it can not be regulated that the use of it in a printer is limited to thermal transfer sheets which received an approval of the quality assurance by printer manufacturers or the like, that is, authentic thermal transfer sheets so that appropriate printing can be performed for the printer.
In addition, when the aforementioned displaying label of the number of the sheets on which information regarding the number of recordable image planes is recorded is applied to a front end of a thermal transfer sheet, a printer can provide information regarding the number of recordable image planes but it can not be regulated that the use of it in the printer is limited to authentic thermal transfer sheets.
In addition, the provision of a light diffracting structure on which information for printing is recorded as a light diffracting image in the aforementioned cassette case is assumed that exchange is made with a cassette when the use of a thermal transfer is completed and the thermal transfer sheet is exchanged with a new one and, therefore, when a cassette case is opened and a thermal transfer sheet contained therein is exchanged with not authentic one for use, it can not be regulated that the use is limited to authentic thermal transfer sheets.
On the other hand, there has been hitherto known a discriminating system in which an apparatus for transmitting and receiving a high frequency-wave of the particular frequency (electromagnetic wave and the like) is combined with a card or a tag having a resonance circuit which is responsive by a radio format in order to manage peoples who come to and go out from the particular places and manage the movement and the discrimination of articles in a physical distribution stage.
The resonance circuit is fundamentally composed of a coil-like circuit on at least one side of a plastic film as a dielectric material and a circuit for a condenser electrode plate or a coil-like circuit which also functions as a condenser on the other side of the film. Alternatively, there is a resonance circuit in which a condenser electrode plate part is not provided at an end of a coil-like circuit, coil-like circuits are formed on both sides of the film so that the circuits hold a plastic film between them so as to correspond to each other and, as resul
Katai Taketomo
Otsubo Norikazu
Shinozaki Kensuke
Takeda Hideichiro
Dai Nippon Printing Co. Ltd.
Ladas & Parry
Pascal Robert
Takaoka Dean
LandOfFree
Thermal transfer sheet, thermal transfer recording method,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Thermal transfer sheet, thermal transfer recording method,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal transfer sheet, thermal transfer recording method,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3358258