Thermal recording system

Incremental printing of symbolic information – Thermal marking apparatus or processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S172000, C347S176000

Reexamination Certificate

active

06493015

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a thermal recording system. More specifically, this invention relates to a thermal recording system wherein a thermal imaging medium is heated imagewise prior to being brought into contact with a receiver material.
Printers based upon a process known as “thermal wax transfer”, or, more correctly, “thermal mass transfer” are available commercially. Such printers use an imaging medium (usually called a “donor sheet” or “donor web”) which, in the case of a color printer, comprises a series of panels of differing colors. Each panel comprises a substrate, typically a plastic film, carrying a layer of fusible material, conventionally a wax, containing a dye or pigment of the relevant color. To effect printing, a panel is contacted with a receiving sheet, which can be paper or a similar material, and passed across a thermal printing head, which effects imagewise heating of the panel. At each pixel where heat is applied by the thermal head, the layer of fusible material containing the dye or pigment transfers from the substrate to the receiving sheet, thereby forming an image on the receiving sheet. To form a full color image, the printing operation is repeated with panels of differing colors so that three or four images of different colors are superposed on a single receiving sheet.
Thermal wax transfer printing is relatively inexpensive and yields images which are good enough for many purposes. However, the resolution of the images which can be produced in practice is restricted since the separation between adjacent pixels is at least equal to the spacing between adjacent heating elements in the thermal head, and this spacing is subject to mechanical and electrical constraints. Also, the process is essentially binary; any specific pixel on one donor panel either transfers or does not, so that producing continuous tone images requires the use of dithering, stochastic screening or similar techniques to simulate continuous tone. One version of thermal wax transfer, called variable dot wax transfer, creates gray scale at the pixel level by creating a variable dot. This is accomplished by using a variable dot printhead, which has smaller heating elements, which creates a more peaked thermal gradient in the media. The longer heat is applied at the pixel the larger is the dot formed. It is not necessary to use halftoning with this technique. However, one problem with this technique is that it becomes very difficult to transfer small dots which results in grain and in the loss of detail in the low density regions.
Finally, some difficulties arise in accurately controlling the color of the images produced. The size of the wax particle transferred tends to vary depending upon whether an isolated pixel, or a series of adjacent pixels are being transferred, and this introduces granularity into the image and may lead to difficulty in accurate control of gray scale. Also, the size of the wax particle transferred depends on the thermal properties and surface roughness of the receiving material. Local nonuniformities in these properties in the receiving material introduce granularity into the image. This effect, in turn, requires expensive specialized receiving materials for high quality images. In addition, any given pixel in the final image may have 0, 1, 2, 3 or 4 superimposed wax particles, and the effects of the upper particles upon the color of the lower particles may lead to problems in accurate control of color balance.
Printers are also known using a process known as “dye diffusion thermal transfer” or “dye sublimation transfer”. This process is generally similar to thermal wax transfer in that a series of panels of different colors are placed in succession in contact with a receiving sheet, and heat is imagewise applied to the panels by means of a thermal head to transfer dye from the panels to the receiving sheet. In dye diffusion thermal transfer processes, however, there is no mass transfer of a binder containing a dye; instead a highly diffusible dye is used, and this dye alone transfers from the panel to the receiving sheet without any accompanying binder. Dye diffusion thermal transfer processes have the advantages of being inherently continuous tone (the amount of dye transferred at any specific pixel can be varied over a wide range by controlling the heat input to that pixel of the panel) and can produce images of photographic quality. However, the process is expensive because special dyes having high diffusivity, and a special receiving sheet, are required. Also, this special receiving sheet usually has a glossy surface similar to that of a photographic print paper, and the glossy receiving sheet limits the types of images which can be produced; one cannot, for example, produce a image with a matte finish similar to that produced by printing on plain paper, and images with such a matte finish may be desirable in certain applications. Finally, problems may be encountered with images produced by dye diffusion thermal transfer because the highly diffusible dyes tend to “bleed” within the image, for example, when contacted by oils from the fingers of users handling the images.
Finally, there is a thermal imaging system, described in, inter alia, U.S. Pat. Nos. 4,771,032; 5,409,880; 5,410,335; 5,486,856; and 5,537,140, and sold by Fuji Photo Film Co., Ltd. under the Registered Trademark “AUTOCHROME” which does not depend upon transfer of a dye, with or without a binder or carrier, from a donor to a receiving sheet. This process uses a recording sheet having three separate superposed color-forming layers, each of which develops a different color upon heating. The top color-forming layer develops color at a lower temperature than the middle color-forming layer, which in turn develops color at a lower temperature than the bottom color-forming layer. Also, at least the top and middle color-forming layers can be deactivated by actinic radiation of a specific wavelength (the wavelength for each color-forming layer being different, but both typically being in the near ultra-violet) so that after deactivation the color-forming layer will not generate color upon heating.
This recording sheet is imaged by first imagewise heating the sheet so that color is developed in the top color-forming layer, the heating being controlled so that no color is developed in either of the other two color-forming layers. The sheet is next passed beneath a radiation source of a wavelength which deactivates the top color-forming layer, but does not deactivate the middle color-forming layer. The sheet is then again imagewise heated by the thermal head, but with the head producing more heat than in the first pass, so that color is developed in the middle color-forming layer, and the sheet is passed beneath a radiation source of a wavelength which deactivates the middle color-forming layer. Finally, the sheet is again imagewise heated by the thermal head, but with the head producing more heat than in the second pass, so that color is developed in the bottom color-forming layer.
In such a process, it is difficult to avoid crosstalk between the three color-forming layers since, for example, if it is desired to image an area of the top color-forming layer to maximum optical density, it is difficult to avoid some color formation in the middle color-forming layer. Insulating layers may be provided between the color-forming layers to reduce such crosstalk, but the provision of such insulating layers adds to the cost of the medium. Print energy tends to be high, since the third pass over the thermal head to form color in the bottom color-forming layer requires heating of this layer through two superposed color-forming layers, and two insulating layers, if these are present. Finally, the need for at least two radiation sources to produce two well-separated wavelengths adds to the cost and complexity of the apparatus required.
Generally speaking, the prior art thermal imaging methods involve the application of heat by a thermal imaging head to the donor element while the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal recording system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal recording system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal recording system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997712

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.