Thermal radiation facelift device

Surgery – Instruments – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S009000, C128S898000

Reexamination Certificate

active

06663618

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a surgical device for performing face-lifting using thermal radiation, and more specifically to a face-lifting device with a specialized tip design that delivers heat. The invention provides a surgical device that can improve the accuracy and speed of face-lift operations. Use of the present invention controllably causes thermally related healing contraction of the target tissues thus allowing face lifting in younger patients without the removal or cutting-out of skin in properly selected patients. The use of the present invention may also aid in the performance and results of traditional face lifting involving the cutting out of skin.
2. Description of Related Art
Cutting (in surgery) will be defined as relatively cleanly breaking through similar or dissimilar tissues with minimal adjacent tissue trauma and thus little tissue stretching, tearing or ripping. Lysis (in surgery) will be defined as breaking through similar or dissimilar tissues with or without adjacent tissue trauma and may involve stretching, tearing or ripping. Depending upon the tissues lysed, the degree of stretching or tearing of lysed tissue edges may be inconsequential or may even result in a desirable benefit such as post surgical contraction. Planes of tissue are not often flat and represent the curviform intersection of dissimilar tissues and are made at least partly of fibrous tissues, either loose and spongy or firm and tough. Planes between the soft internal organs are usually loose and spongy. Planes of tissues in the face and on bones are firm and tough. Undermining will be defined as tissue separation either within or between defined tissue planes. Undermining may be by sharp (instrument) or dull (instrument) depending upon the amount of fibrous tissue binding or existing between the tissue planes to be separated. Undermining is usually performed, as is most surgery, with the intention of minimizing trauma. Sharp instrument undermining is usually performed to separate highly fibrous or collagenous tissues; however, sharp undermining suffers from the risk of penetrating adjacent tissues inadvertently because of loss of ability to follow the desired plane. Inability to follow or maintain the plane in sharp undermining is frequently due to limited visibility, difficulty “feeling” the fibrous plane, or scarring (collagen fibrosis) resulting from previous trauma or surgery. Even experienced surgeons may from time to time lose the correct plane of sharp undermining; great skill is required. Blunt undermining allows a rounded, non-sharp tipped, instrument or even human finger to find the path of least resistance between tissues; once the desired plane is found by the surgeon, it is easy to maintain the plane of blunt undermining until the task is complete. Unfortunately, blunt undermining between highly fibrous tissues such as those that comprise and maintain the shape of the human face usually causes imprecise tunneling with fibrous walls of variable thickness. Dissection usually implies a deliberate and careful sorting out and identification of tissues and usually implies that some sort of undermining has been performed to isolate the desired structure(s). In face-lifting surgery, plastic surgeons have so commonly used the terms undermining and dissection interchangeably that they have become synonymous for the most part in this specific situation. Tracking means to maintain a direction of movement upon forcing a tissue-separating instrument without unpredictable movement or leaving the desired tissue plane(s). Planar tracking means to stay in the same tissue planes. Linear tracking means to move uniformly in a straight or uniformly curved path without unpredictable movement Groups of linear tracks may form a network that creates an undermined tissue plane.
Anatomical Perspective: Lysis or undermining in one dimension (linear=x) implies forming a tunnel. Lysing or undermining in 2 dimensions at any one instant forms a plane (x, y). Traditional face-lift undermining is done just under the leather (dermis) layer of the skin where dermis joins underlying fat or subcutaneous (SQ). Even deeper within the SQ fat run larger blood vessels and delicate, non-regenerating motor nerves to the muscles that give the human face motion and expression. Deep/beneath to the SQ fat reside the muscles and glands of the face. The relevant face-lift anatomy may be referenced in Micheli-Pellegrini V., Surgical Anatomy and Dynamics in Face Lifts, Facial Plastic Surgery 1992:8:1-10, Gosain A. K. et al., Surgical Anatomy of the SMAS: A Reinvestigation, Plast Reconstr Surg. 1993: 92:1254-1263 and Jost G, Lamouche G., SMAS in Rhytidectomy, Aesthetic Plast Surg. 6:69, 1982. The SQ fat differs from body location to body location. On the face, the SQ fat has many fiber-bundles (septae) carrying nerves and blood vessels. If a surgeon were to move, shove, or forwardly-push a blunt, dull-tipped, 1-inch chisel or pencil shaped device through the fat of the face where SQ abuts the dermis, the sheer thickness of the fiber bundles would likely cause slippage of the device and result in the formation of pockets or tunnels surrounded by compacted fiber bundles or septae. Proper performance of a face-lift involves breaking the septae at a proper level to avoid damaging more important structures such as blood vessels and nerves and glands.
Disadvantages of the current techniques are numerous. Face-lifting devices described in the prior art resemble undermining devices that were constructed with cutting edges that rely entirely on the skill of the surgeon to maintain control. Inadvertent lateral cutting or tissue trauma is difficult to control. In addition, speed of separation is affected to ensure accuracy by the surgeon in separating fibrous tissue planes. There are two principle locations for face lift undermining (dissection): in the more common lower facelift (cheek
eck-lift) undermining in the subcutaneous tissues is customarily performed; in the less common upper facelift (which approximates brow-lifting) undermining in the subgaleal or temporalis fascia plane is customarily performed. Use of prior art undermining devices (including scissors, sharp rhytisectors, etc) in these planes during cosmetic surgery has, at times, resulted in unwanted cutting, trauma or perforation of adjacent structures. Scissors and rhytisectors are planar cutting instruments; thus, the position of the cutting edges with respect to the surface of the face is controllable only by the surgeon estimating location, as no 3
rd
dimensional bulbous limitation exists. Unfortunately, scissors with 3 dimensionally “bulbous”, rounded tips cannot close all the way to cut target tissue. Scissors with 2 dimensionally rounded tips can close all the way to cut target tissue but may wander inadvertently between tissue planes due to the thin third dimension (thickness) of the scissors blades.
Rubin (U.S. Pat. No. 3,667,470) describes a bone shaver and grooving device that consists of a single sharp edged extension protruding perpendicular to the plane of motion of the cutting edge of the device. The extension is intended to carve and maintain a groove in rigid, immobile, bone as it is driven forward by a surgeon's hammer. This device is impractical for lysing facial planes because the extension would severely damage blood vessels and delicate nerves. In addition, Rubin's invention would not maintain a planar track in soft tissues. Hendel (U.S. Pat. No. 4,600,005) describes a guided osteotome for harvesting cranial bone graft that has a single cutting tip between two bulb like guides at the edges. The guides prevent the hammer driven cutting edge from penetrating the skull too deeply as the harvesting cutting edge would tend to “dive” deep into the skull toward brain tissue if unhindered (vertical tracking control). However, these single guides with their geometry cannot effectively compress or pass through the collagenous, fibrous tissues into recessions making for a more precise ly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal radiation facelift device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal radiation facelift device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal radiation facelift device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3169281

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.