Thermal actuator drop-on-demand apparatus and method with...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06435666

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to drop-on-demand liquid emission devices, and, more particularly, to ink jet devices which employ thermo-mechanical actuators.
BACKGROUND OF THE INVENTION
Drop-on-demand (DOD) liquid emission devices have been known as ink printing devices in ink jet printing systems for many years. Early devices were based on piezoelectric actuators such as are disclosed by Kyser et al., in U.S. Pat. No. 3,946,398 and Stemme in U.S. Pat. No. 3,747,120. A currently popular form of ink jet printing, thermal ink jet (or “bubble jet”), uses electroresistive heaters to generate vapor bubbles which cause drop emission, as is discussed by Hara et al., in U.S. Pat. No. 4,296,421.
Electroresistive heater actuators have manufacturing cost advantages over piezoelectric actuators because they can be fabricated using well developed microelectronic processes. On the other hand, the thermal ink jet drop ejection mechanism requires the ink to have a vaporizable component, and locally raises ink temperatures well above the boiling point of this component. This temperature exposure places severe limits on the formulation of inks and other liquids that may be reliably emitted by thermal ink jet devices. Piezo-electrically actuated devices do not impose such severe limitations on the liquids that can be jetted because the liquid is mechanically pressurized.
The availability, cost, and technical performance improvements that have been realized by ink jet device suppliers have also engendered interest in the devices for other applications requiring micro-metering of liquids. These new applications include dispensing specialized chemicals for micro analytic chemistry as disclosed by Pease et al., in U.S. Pat. No. 5,599,695; dispensing coating materials for electronic device manufacturing as disclosed by Naka et al., in U.S. Pat. No. 5,902,648; and for dispensing microdrops for medical inhalation therapy as disclosed by Psaros et al., in U.S. Pat. No. 5,771,882. Devices and methods capable of emitting, on demand, micron-sized drops of a broad range of liquids are needed for highest quality image printing, but also for emerging applications where liquid dispensing requires mono-dispersion of ultra small drops, accurate placement and timing, and minute increments.
A low cost approach to micro drop emission is needed which can be used with a broad range of liquid formulations. Apparatus and methods are needed which combines the advantages of microelectronic fabrication used for thermal ink jet with the liquid composition latitude available to piezo-electro-mechanical devices.
A DOD ink jet device which uses a thermo-mechanical actuator was disclosed by T. Kitahara in JP 2030543, published Jan. 31, 1990. The actuator is configured as a bi-layer cantilever moveable within an ink jet chamber. The beam is heated by a resistor causing it to bend due to a mismatch in thermal expansion of the layers. The free end of the beam moves to pressurize the ink at the nozzle causing drop emission. Recently, disclosures of a similar thermo-mechanical DOD ink jet configuration have been made by K. Silverbrook in U.S. Pat. Nos. 6,067,797; 6,234,609; and 6,239,821. Methods of manufacturing thermo-mechanical ink jet devices using microelectronic processes have been disclosed by K. Silverbrook in U.S. Pat. Nos. 6,254,793 and 6,274,056.
Thermo-mechanically actuated drop emitters are promising as low cost devices which can be mass produced using microelectronic materials and equipment and which allow operation with liquids that would be unreliable in a thermal ink jet device. However, operation of thermal actuator style drop emitters, at high drop repetition frequencies, requires careful attention to excess heat build-up. The drop generation event relies on creating a pressure impulse in the liquid at the nozzle. A significant rise in baseline temperature of the emitter device, and, especially, of the thermo-mechanical actuator itself, precludes system control of a portion of the available actuator displacement that can be achieved without exceeding maximum operating temperature limits of device materials and the working liquid itself. Apparatus and methods of operation for thermo-mechanical DOD emitters are needed which manage heat build-up so as to maximize the productivity of such devices.
The present invention provides for emitting drops by reducing the thermal energy input when groups of drops or certain series of drops are required by the application. A damped resonant oscillation of the thermal actuator itself is required to implement the present invention.
Use of fluid resonances is known for piezoelectric drop-on-demand ink jet devices. In these known methods, the resonance of the ink meniscus at the nozzle, driven by surface tension effects, or the Helmholtz resonance of the ink chamber, driven by compliance effects, is used to change the volume or number of emitted drops. Tence et al. in U.S. Pat. No. 5,689,291 employ waveforms that drive piezoelectric transducers with spectral energy concentrations at frequencies associated with modal resonances of ink in the ink jet printhead orifices. Exciting different resonance modes of the ink meniscus causes the emission of different drop sizes.
Paton et al., in U.S. Pat. No. 5,361,084, disclose a method of multi-tone printing using a piezoelectric DOD printhead having elongated ink chambers and sidewall actuators, wherein an individual jet is excited using a packet of pulses so as to excite a longitudinal acoustic resonance in the jet channel which causes the emission of a number of discrete drops. Lee et al., in U.S. Pat. No. 4,513,299 disclose a similar use of acoustic resonance of the ink channels of a piezoelectric ink jet printhead.
DeBonte et al., in U.S. Pat. No. 5,202,659, disclose a method of operating a piezoelectric printhead using the dominant resonant frequency of the ink jet apparatus. In the specific examples disclosed, this dominant resonance is described as the Helmholtz resonance of an individual jet chamber which is excited by actuating the piezo transducer to first expand the jet chamber, waiting the resonance period, and then contracting the chamber to reinforce this resonance. This excitation process is repeated for multiple cycles to generate multiple merging drops for printing spots having different sizes. The methods disclosed by DeBonte, et al., operate by exciting bulk fluid mechanical resonances which are appropriate for physically large piezoelectric devices but are not useful for drop emitter chambers fabricated with dimensions of less than a few hundred microns. Helmholtz and other fluid mechanical resonances occur at frequencies too high to support multiple drop formation when fluid path dimensions are less than 1 mm.
Other piezoelectric ink jet inventors discourage using fluid mechanical resonances when uniformity of drop volume and velocity are important. Stanley et al., in U.S. Pat. No. 5,170,177 discloses a method of operating a piezo DOD device wherein the electrical pulses are adjusted to minimize their energy content at a frequency corresponding to the dominant acoustic frequency of the ink jet in order to accelerate drop break-off, optimize drop shape and minimize drop speed variations. Disclosures by Murakami et al., in U.S. Pat. No. 4,577,201 and Torii et al., in U.S. Pat. No. 6,102,512 also teach avoidance of Helmholtz and other fluid mechanical resonances in order to achieve uniform drop volume and velocity performance. Further, Pengelly in U.S. Pat. No. 5,801,732 discloses drop volume and velocity non-uniformities caused by exciting piezo transducer resonances in an ink jet printhead and a timing method for reducing these effects.
Thermo-mechanical DOD emitters are needed which reduce energy input and waste heat build-up so as to allow maximum net drop emission frequencies. The present invention makes use of a damped resonance oscillation of the thermal actuator and not fluid mechanical resonances of the meniscus, Helmholtz oscillations of fluid chambers, or other resonances of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermal actuator drop-on-demand apparatus and method with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermal actuator drop-on-demand apparatus and method with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal actuator drop-on-demand apparatus and method with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2949329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.