Therapy of cancer by insect cells containing recombinant...

Drug – bio-affecting and body treating compositions – Whole live micro-organism – cell – or virus containing – Genetically modified micro-organism – cell – or virus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093100, C424S093200, C424S069000, C424S069000, C424S069000, C424S069000, C435S320100, C435S455000, C435S456000, C435S325000, C435S348000, C536S023100, C536S023500, C536S023520

Reexamination Certificate

active

06342216

ABSTRACT:

1.0 BACKGROUND OF THE INVENTION
1.1 Field of the Invention
The present invention relates generally to the fields of immunology, cancer therapy, molecular biology and cell biology. The present invention relates in particular to compositions and methods for use of insect cells containing non-surface expressed proteins or peptides, encoded by baculovirus expression vectors. Such compositions and methods may be of therapeutic use in the treatment of disease states, such as cancer.
1.2 Description of Related Art
Most progressively growing neoplasms do not provoke immunological responses sufficient to control the growth of malignant cells, despite the fact that tumor cells express antigens which are recognizable as foreign by the immune system of the patient (Sibille et al., 1990).
Tumor-associated antigens (TAAs) capable of being recognized by the cellular immune system (T-cells) have been identified. These antigens (also referred to as tumor associated or T-cell epitopes) include oncogene products activated by mutation and rearrangement (e.g., position 12 mutation in p21
ras
; P210 product of bcr/abl rearrangement); mutated tumor-suppressor gene products (e.g., p53); reactivated embryonic gene products not expressed in adult tissues (e.g., P91A found in the P815 mastocytoma); MAGE 1 (found in melanomas and human breast tumors); tissue specific self-antigens expressed by tumors (e.g., tyrosinase); and a variety of others (Pardoll, 1993). Most tumor cell populations express certain common TAAs, but are heterogeneous with respect to the spectrum of TAAs that they express. Despite the array of tumor-associated T-cell epitopes expressed in tumors, tumor cells remain poorly immunogenic.
An approach to genetic engineering of tumor cells is the use of viral expression vectors to infect tumor cells. Poxvirus technology has been utilized to elicit immunological responses to TAAs in animal models of experimentally-induced tumors. The gene encoding carcinoembryonic antigen (CEA) was isolated from human colon tumor cells and inserted into the vaccinia virus genome (Kaufman et al., 1991). Inoculation of the vaccinia-based CEA recombinant elicited CEA-specific antibodies and an antitumor effect in a mouse model (Id.). The human melanoma TAA, p97, has also been inserted into vaccinia virus and shown to protect mice from tumor transplants (Hu et al., 1988; Estin et al., 1988). Bernards et al. (1987) constructed a vaccinia recombinant that expressed the extracellular domain of the neu-encoded p185 glycoprotein. Mice immunized with this recombinant virus developed a strong humoral response against the neu gene product and were protected against subsequent tumor challenge.
Killing of tumor cells by the immune system is mediated by cytotoxic T-lymphocytes (CTLs). However, the recognition of tumor-associated antigens is restricted by class 1 determinants specified by the major histocompatibility complex (DeGiovanni et al., 1991; Porgador et al., 1989; Kim et al., 1994). Suppression or failure to express MHC class I antigens is one of several documented mechanisms which enable tumor cells to escape T-cell mediated host immunity (Elliott et al., 1990; Tanaka et al., 1988).
Attempts have been made to use cytokines to augment the immune response to tumor-associated antigens. The goal of this strategy is to alter the local immunological environment of the tumor cell to enhance the presentation of T-cell epitopes or the activation of tumor-specific T-lymphocytes (Pardoll, 1993). Various cytokine genes have been introduced into tumor cells. Immunization with neoplastic cells modified to secrete IL-2 (Porgador et al., 1993a; Karp et al., 1993), IFN-&agr; (Porgador et al., 1993b) or GM-CSF (Dranoff et al., 1993), among others (Pardoll et al., 1992; Rosenberg et al., 1992), resulted in the generation of CTLs with cytotoxic activity towards both the cytokine-secreting and non-secreting tumor cells. Experimental animals and a small number of patients with established neoplasms treated with the cytokine-secreting cells survived for prolonged periods, although in most instances tumor growth eventually recurred (Id.).
Recombinant vaccinia viruses also have been used to express cytokine genes (Ruby et al., 1992). Expression of certain cytokines (IL-2, IFN-&agr;) led to self-limiting vaccinia virus infection in mice and, in essence, acted to attenuate the virus. Expression of other cytokines (i.e. IL-5, IL-6) were found to modulate the immune response to co-expressed extrinsic immunogens (Review by Ruby el al., 1992).
Although promising, these observations have not yet resulted in a clinically effective method of eliminating or substantially reducing tumor burden in individuals with cancer. In addition to being expensive, direct in vivo administration of purified cytokines may result in toxic side-effects. Genetically engineering tumor cells to express cytokines in vitro, with subsequent reintroduction into the patient, is difficult, time-consuming, expensive and of unproven clinical efficacy. Gene therapy with human infective viruses engineered to express cytokines has not yet been successfully implemented at the clinical level. One difficulty with this approach is the possible activation of replication-defective viruses by in vivo recombination with naturally occurring human viruses.
A potential solution to this problem involves using baculovirus that has been genetically engineered to express therapeutic proteins. Naturally occurring insect baculovirus infects only arthropods. The host range of insect baculoviruses has been extensively studied and no evidence of infection or pathogenic responses has been identified in non-host insects, plants, vertebrates or humans (Groner, 1986). This feature may make baculovirus an ideal agent to be modified and used for the delivery of drugs, genes, or therapeutics.
2.0 SUMMARY OF THE INVENTION
The present invention addresses deficiencies in the art by disclosing compositions and methods for use of insect cells containing an isolated nucleic acid segment encoding a selected non-surface expressed protein or peptide, for example, a therapeutic protein. A “non-surface expressed protein or peptide” is defined herein as an expressed protein or peptide that is not localized to the cell membrane of the insect cell. In this sense, such proteins or peptides may potentially be secreted into the extracellular environment. Alternatively, the non-surface expressed protein or peptide may be intracellular within the insect cell.
In certain embodiments, the isolated nucleic acid segment is contained within a baculovirus expression vector. The construction of recombinant baculovirus vectors may be accomplished by techniques well known in the art.
In one aspect of the present invention, the non-surface expressed protein or peptide is a cytokine. It is contemplated that almost any cytokine could be used in the practice of the present invention. Classes of cytokines contemplated within the scope of the present invention include interferons, interleukins, tumor necrosis factors and colony stimulating factors. Examples of specific cytokines of potential use in the present invention include interleukin 1 (IL-1), IL-2, IL-5, IL-10, IL-11, IL-12, IL-18, interferon-&ggr; (IF-&ggr;), IF-&agr;, IF-&bgr;, tumor necrosis factors-&agr; (TNF-&agr;), and GM-CSF (granulocyte macrophage colony stimulating factor). Such examples are representative only and are not intended to exclude other cytokines known in the art. In a particular embodiment, the cytokine is &bgr;-interferon or GM-CSF.
The skilled artisan will realize that the term “protein or peptide” encompasses proteins or peptides with the naturally occurring amino acid sequences of identified proteins or peptides, as well as minor sequence variants of such proteins or peptides. These may, for instance, be minor sequence variants of the polypeptide which arise due to natural variation within the population or they may be homologues found in other species. They also may be sequences which do not occur naturally but which are sufficiently similar that they fun

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Therapy of cancer by insect cells containing recombinant... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Therapy of cancer by insect cells containing recombinant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Therapy of cancer by insect cells containing recombinant... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2824704

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.