Therapeutic compositions and methods of use thereof

Drug – bio-affecting and body treating compositions – Inorganic active ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S178000, C514S470000, C514S535000, C514S557000, C514S561000

Reexamination Certificate

active

06524623

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present application is directed to therapeutic compositions including an osmotic agent and an active agent and, in particular, to compositions including dimethyl isosorbide as the osmotic agent.
2. Related Art
Cells and other membranous tissues contain and are surrounded by various fluids that contain electrolytes. The difference in the type and concentration of the electrolytes contained in the cells and membranous tissues may in some instances polarize, or provide an electrical potential across the membrane. For example, in general, the electrolytic fluid contained in the interior of a cell contains more negatively charged ions than the electrolytic fluid surrounding the exterior of the cells, which contains positively charged ions. Thus, it can be seen that the normal state of cells is one in which the electrical charge of the fluids contained in and surround a cell are not balanced. The normal charge difference across the membrane creates an electrical potential which is known as the resting threshold potential. For a nerve to conduct a pain impulse, it must be at its resting threshold potential.
With respect to nerve cells, the electrolytic fluid in the interior of a nerve cell at rest has a resting threshold potential of about −85 millivolts with respect to the electrolytic fluid surrounding the nerve cell. Pain is felt by a subject when an irritant to the nerve cell occurs, causing sodium channels in the nerve cell membrane to open for a brief period of time (on the order of milliseconds), allowing sodium ions contained in the fluid surrounding the nerve cells to move into the fluid contained in the interior of the nerve cells, after which conduction along the nerve takes place, leading to a complete action potential and pain emission.
One example of such a mechanism involves the pulpal nerves. The electrolytic fluid in the interior of the pulpal nerves has a resting threshold potential of about −85 millivolts with respect to the electrolytic fluid surrounding the pulpal nerve cell. When an irritant of about +15 millivolts occurs, sodium ions in the fluid surrounding the pulpal nerve move across the pulpal nerve membrane to the interior of the pulpal nerve and conduction takes place, leading to a complete action potential and pain emission.
One known mechanism for preventing pain in pulpal nerves is to increase the concentration of potassium ions in the electrolytic fluid surrounding the pulpal nerves. Surrounding the pulpal nerves with a high concentration of potassium ions causes the nerve to depolarize. “Depolarization” occurs when the resting threshold potential is increased. In the present instance, the resting threshold potential is increased from −85 millivolts to zero or a positive value. When the resting threshold potential is zero, or a positive value, the nerve cannot initiate a pain impulse. Thus, it is known that if the resting threshold potential of a nerve is increased, it is possible to prevent an action potential from taking place, the nerve will be unable to conduct an impulse, and the subject will not feel pain.
In theory, pain inhibition in the pulpal nerves may be accomplished by a varoety of mechanisms. However, in practice, anatomical constrictions, irregularities, and other resistances ound in the dentinal tubles sometim potassium ions from reaching the electrolytic fluid surrounding the nerve cell.
Any mechanism for charging the resting threshold potential of nerves is desirable for interfering with its ability to illicit pain.
SUMMARY
The present invention is directed, in one embodiment, to a method of decreasing the volume of a cell having a membrane and an electrical potential across the membrane that is substantially equal to a resting threshold potential. The method involves the steps of topically applying a composition containing an osmotic agent, increasing the electrical potential across the cell membrane to a level greater than the resting threshold potential, and decreasing the electrical potential across the cell membrane to a level less than the resting threshold potential.
In another embodiment, the invention is directed to a therapeutic composition. The therapeutic composition includes dimethyl isosorbide and an active agent.
Another embodiment of the present invention is directed to a method of treating a subject. The method involves topically applying an effective amount of a composition containing an osmotic agent and an active agent to an area to be treated.
Another embodiment of the present invention is directed to a method of treating a subject. The method involves topically applying an effective amount of a composition containing dimethyl isosorbide and an active agent to an area to be treated.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is directed to therapeutic compositions containing at least one osmotic agent and at least one active agent. The compositions may be used topically by subjects to treat, relieve, or treat and relieve, the symptoms of various conditions and disorders, by providing improved delivery of the active agent contained in the composition to the region of interest. The amount of the osmotic agent, the amount of the active agent, or the amount of both the osmotic agent and the active agent contained in the present compositions may be varied in order to achieve the desired therapeutic results. This may be easily accomplished by those of skill in the art using routine experimentation and traditional techniques.
In practice, anatomical constrictions, irregularities, and resistances may sometimes minimize or prevent active agents from reaching a targeted site selected for therapeutic treatment. “Osmotic agent,” as used herein, means any agent that raises the osmotic pressure of fluid on one side of a membranous structure drawing water across the membrane, causing the structure to shrink in volume. Using the example of a cell, an osmotic agent according to the present compositions may draw water from the interior of the cell such that the volume of the cell is reduced. When cells in a targeted region are reduced in volume, the intercellular spaces are increased. Thus, the osmotic agents of the present compositions increase the amount of space available between cells, allowing the electrolytic fluid surrounding the cells to move more freely and quickly between the cells.
In addition to increasing the intercellular volume, the reduction in cell volume resulting from the osmotic agents disturbs the normal function of the cells, i.e., the cell with reduced volume is unable to function normally. The functions of nerves that may be disturbed as a result of the cell volume reduction may include the ability to stimulate an inflammatory response and the ability to illicit pain, depending on whether the nerves are from the central nervous system or the autonomic nervous system.
The present compositions unexpectedly allow active agents to be delivered directly to deeper targeted sites, eliminating the need for injections, or systemic (oral) medications that may present safety concerns. The present compositions have the capability to readily penetrate into and through the skin, and in some instances into the underlying tissue. In this manner, the osmotic agent of the present compositions increases the absorption and penetration depth of the active agents into, for example, the skin and underlying tissues, the mucosae, and teeth. Thus, the therapeutic effectiveness of the active agent may be increased for its desired purpose. The increased therapeutic effectiveness of active agents in the present compositions, without untoward side effects, is unexpected.
As a result, many otherwise suitable active agents may be made therapeutically effective by the addition of an osmotic agent to a composition containing an active agent. For example, many active agents have been used to treat diseases or conditions unsuccessfully. In some instances, they have been unsuccessful because the delivery agent involves other tissues and systems (diges

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Therapeutic compositions and methods of use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Therapeutic compositions and methods of use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Therapeutic compositions and methods of use thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3119628

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.