Therapeutic and diagnostics proteins comprising a SOCS box

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S300000, C530S333000, C435S069100

Reexamination Certificate

active

06323317

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to therapeutic and diagnostic agents. More particularly, the present invention provides therapeutic molecules capable of modulating signal transduction such as but not limited to cytokine-mediated signal transduction. The molecules of the present invention are useful, therefore, in modulating cellular responsiveness in cytokines as well as other mediators of signal transduction such as endogenous or exogenous molecules, antigens, microbes and microbial products, viruses or components thereof, ions, hormones and parasites.
Bibliographic details of the publications referred to in this specification by author are collected at the end of the description. The subject specification contains nucleotide and amino acid sequence information prepared using the programme PatentIn Version 2.0, presented herein after the bibliography. Each nucleotide or amino acid sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc).The length, type of sequence (DNA, protein (PRT), etc) and source organism for each nucleotide or amino acid sequence are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide and amino acid sequences referred to in the specification are defined by the information provided in numeric indicator field <400> followed by the sequence identifier (eg. <400>1, <400>2, etc).
The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D represents a nucleotide other than Cytosine and N represents any nucleotide residue. A summary of the sequence listing is given in Table 1.
BACKGROUND OF THE INVENTION
Cells continually monitor their environment in order to modulate physiological and biochemical processes which in turn affects future behaviour. Frequently, a cell's initial interaction with its surroundings occurs via receptors expressed on the plasma membrane. Activation of these receptors, whether through binding endogenous ligands (such as cytokines) or exogenous ligands (such as antigens), triggers a biochemical cascade from the membrane through the cytoplasm to the nucleus.
Of the endogenous ligands, cytokines represent a particularly important and versatile group. Cytokines are proteins which regulate the survival, proliferation, differentiation and function of a variety of cells within the body [Nicole, 1994]. The haemopoietic cytokines have in common a four-alpha helical bundle structure and the vast majority interact with a structurally related family of cell surface receptors, the type I and type II Cytokine receptors. [Bazan, 1990; Sprang, 1993]. In all cases, ligand-induced receptor aggregation appears to be a critical event in initiating intracellular signal transduction cascades. Some cytokines, for example growth hormone, erythropoietin (Epo) and granulocyte-colony-stimulating factor (G-CSF), trigger receptor homodimerisation, while for other cytokines, receptor heterodimerisation or heterotrimerisation is crucial. In the latter cases, several cytokines share common receptor subunits and on this basis can be grouped into three subfamilies with similar patterns of intracellular activation and similar biological effects [Hilton, 1994]. Interleukin-3 (IL-3), IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) use the common &bgr;-receptor subunit (&bgr;c) and each cytokine stimulates the production and functional activity of granuloctyes and macrophages. IL-2, IL-4, IL-7, IL-9, and IL-15 each use the common &ggr;-chain (&ggr;c), while IL-4 and IL-13 share an alternative &ggr;-chain (&ggr;′c or IL-13 receptor &agr;-chain). Each of these cytokines plays an important role in regulating acquired immunity in the lymphoid system. Finally, IL-6, IL-11, leukaemia inhibitory factor (LIF), oncostatin-M (OSM), ciliary neurotrophic factor (CNTF) and cardiotrophin (CT) share the receptor subunit gp 130. Each of these cytokines appears to be highly pleiotropic, having effects both within and outside the haemopoietic system [Nicola, 1994].
In all of the above cases at least one subunit of each receptor complex contains the conserved sequence elements, termed box 1 and box 2, in their ctyoplasmic tails [Murakami, 1991]. Box 1 is a proline-rich motif which is located more proximal to the transmembrane domain than the acidic box 2 element. The box-1 region serves as the binding site for a class of cytoplasmic tyrosine kinases termed JAKs (Janus kinases). Ligand-induced receptor dimerisation serves to increase the catalytic activity of the associated JAKs through cross-phosphorylation. Activated JAKs then tyrosine phosphorylate several substrates, including the receptors themselves. Specific phosphotyrosine residues on the receptor then serve as docking sites for SH2-containing proteins, the best characterised of which are the signal transducers and activators of transcription (STATs) and the adaptor protein, shc. The STATs are then phosphorylated on tyrosines, probably by JAKs, dissociate from the receptor and form either homodimers or heterodimers through the interaction of the SH2 domain of one STAT with the phosphotyrosine residue of the other. STAT dimers then translocate to the nucleus where they bind to specific cytokine-responsive promoters and activate transcription [Darnell, 1994; Ihle, 1995; Ihle, 1995]. In a separate pathway, tyrosine phosphorylated shc interacts with another SH2 domain-containing protein, Grb-2, leading ultimately to activation of members of the MAP kinase family and in turn transcription factors such as fos and jun [Sato, 1993; Cutler, 1993 ]. These pathways are not unique to members of the cytokine receptor family since cytokines that bind receptor tyrosine kinases also being able to activate STATs and members of the MAP kinase family [David, 1996; Lehman, 1996; Shual, 1993; Sato, 199; Cutler, 1993].
Four members of the JAK family of cytoplasmic tyrosine kinases have been described, JAK1, JAK2, JAK3 and TYK2, each of which binds to a specific subset of cytokine receptor subunits. Six STATs have been described (STAT1 through STAT6), and these too are activated by distinct cytokine/receptor complexes. For example, STAT1 appears to be functionally specific to the interferon system, STAT4 appears to be specific to IL-12, while STAT6 appears to be specific for IL-4 and IL-13. Thus, despite common activation mechanisms some degree of cytokine specificity may be achieved through the use of specific JAKs and STATs[Thierfelder, 1996; Kaplan, 1996; Takeda, 1996; Shimoda, 1996; Meraz, 1996; Durbin, 1996].
In addition to those described above, there are clearly other mechanisms of activation of these pathways. For example, the JAK/STAT pathway appears to be able to activate MAP kinases independent of the shc-induced pathway [David, 1995] and the STATs themselves can be activated without binding to the receptor, possibly by direct interaction with JAKs [Gupta, 1996]. Conversely, full activation of STATs may require the action of MAP kinase in addition to that of JAKs [David, 1995; Wen, 1995].
While the activation of these signalling pathways is becoming better understood, little is known of the regulation of these pathways, including employment of negative or positive feedback loops. This is important since once a cell has begun to respond to a stimulus, it is critical that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Therapeutic and diagnostics proteins comprising a SOCS box does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Therapeutic and diagnostics proteins comprising a SOCS box, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Therapeutic and diagnostics proteins comprising a SOCS box will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2578152

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.