Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...
Reexamination Certificate
2002-07-02
2004-10-26
Winakur, Eric F. (Department: 3736)
Surgery
Diagnostic testing
Measuring anatomical characteristic or force applied to or...
Reexamination Certificate
active
06808499
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a needling device for mechanically effecting needling procedures according to predetermined parameters and/or measuring the physical and/or electrical characteristics of such needling procedures. The invention also relates to methods of using the invention for mechanically effecting needling procedures according to predetermined parameters and/or measuring the physical and/or electrical characteristics of such needling procedures.
BACKGROUND OF THE INVENTION
Despite a paucity of rigorous scientific testing, the alternative medicine industry has rapidly grown into a consumer-driven industry, involving annual spending on the order of $14 billion (32). Many alternative therapies are now covered by health plans and taught in medical schools (2a,22a). Consequently, there is a need for research into alternative therapies to validate alternative treatment methods where such validation is warranted, thereby moving valuable treatment methods from the “alternative medicine” category into mainstream medicine, where they will benefit a larger proportion of society. Additionally, rigorous investigation of the basic mechanisms underlying these treatments will serve to protect the public from fraudulent and ineffective therapies based on false theoretical assumptions.
Proponents of alternative therapies often claim that the beneficial effects of such therapies result from phenomena that are not explainable by the currently accepted scientific paradigm. However, it is clear that many alternative therapies do elicit verifiable therapeutic effects, which are explainable according to modem scientific principles. The failure to elucidate the mechanisms responsible for these effects is primarily due to a lack of rigorous investigation.
Moreover, it is important not to dismiss a priori all alternative therapies on the grounds that they are based on concepts that are not compatible with existing scientific knowledge. Ideas that lay outside of prevailing scientific opinion often spur important advances, and the investigation of alternative therapies can be expected to yield new insights into basic disease processes.
An important aspect of the investigation of alternative therapies is the identification of measurable physiological changes occurring in response to such therapies. Once identified, these physiological changes can be analyzed to determine their relationship to the therapeutic effect. The identification and characterization of such physiological changes is complicated where therapies involve procedures that are difficult to test under double-blind conditions. For example, studies involving alternative therapies are often complicated by placebo responses, which are more pronounced with impressive and exotic treatments (102a).
Acupuncture is a component of a complex therapeutic system that has been used continuously in China for more than 2000 years (15,64,98). Acupuncture has become increasingly popular in the United States and is now performed by thousands of physicians, dentists, acupuncturists and other practitioners. Acupuncture has been investigated more thoroughly than any other alternative therapy; however, much remains unknown regarding the mechanisms that lead to its therapeutic effects (81). In its concluding summary, the 1997 NIH Consensus Development Conference Panel on Acupuncture stated that further research into acupuncture-related biological mechanisms is “not only important for elucidating the phenomena associated with acupuncture, but also has the potential for exploring new pathways in human physiology not previously explored in a systematic manner” (81).
Acupuncture research has focused primarily on the systemic effects of the use of acupuncture for inducing analgesia. Analgesia can be obtained by prolonged electrical stimulation of acupuncture needles (electroacupuncture). Acupuncture analgesia is reported to involve the repetitive stimulation of sensory afferent nerves and activation of endogenous pain modulation systems (76,102). The local effects of acupuncture needling have, on the other hand, so far received very little study.
A number of factors suggest that local mechanisms specific to acupuncture may play an important role in its therapeutic effect. First, acupuncture involves the needling of acupuncture points, which are traditionally described as discrete points on the body where acupuncture needling produces a maximum effect (94b). Second, correct acupuncture needling elicits a characteristic local response termed “de qi.” This response is often described as a sensation experienced by the patient. Importantly however, a biomechanical phenomenon occurs at the site of the acupuncture needling simultaneously with this sensation (18). Finally, it appears that this biomechanical phenomenon occurs maximally when acupuncture points are needled, compared with surrounding tissue (93).
Needle Grasp and Needling Sensation
A potentially important local effect of needling techniques, such as those used to effect acupuncture therapy, is needle grasp. For example, during acupuncture treatments, acupuncture needles are inserted into specific points of the body, known as acupuncture points, and are then manipulated to elicit a characteristic needling reaction termed “de qi” is observed (1,7,18,20,33,49,53,93). De qi is considered essential to the correct identification of acupuncture points and to the therapeutic effect of acupuncture (18,23,49,66,93,102).
De qi refers to a physiological phenomenon considered essential to guide the correct localization of acupuncture points and appears to be fundamental to the therapeutic effect of acupuncture (18,23,49,60a,66,93,102). In nearly all styles of acupuncture, both manual and electrical, de qi is elicited by insertion and initial brief manual manipulation of the acupuncture needle (1,18,33,49,53,60a,93,99,101). De qi manifests itself in two distinct manners, referred to herein as the two “components of de qi”: needing sensation and needle grasp.
Needling sensation, the subjective component of de qi, consists of the sensations perceived by the patient during the needling procedure. Typically, patients describe sensations of “soreness, numbness, heaviness or distention in the area surrounding the needle” (1,7).
Needle grasp, the objective component of de qi, consists of a change in the mechanical interaction between the needle and surrounding tissue. Needle grasp can be perceived by the patient, but importantly, it also can be directly perceived by the therapist. The therapist perceives de qi as contracting of the tissue around the needle, resulting in increased resistance to further motion of the needle (either axial or rotational). Pulling back on the needle results in a visible upward tenting of the skin and increased resistance to pullout.
Many descriptive terms have been used to convey the acupuncturist's perception of needle grasp both in ancient texts and in publications representing the entire spectrum of modern acupuncture practice including proponents of both manual and electrical needle manipulation methods: “tightening” (93), “contraction” (23,99), “gathering” (23), “rooting” (94), “tenseness” (7,18,60a), “heaviness” (23), “squeezing” (49), “grabbing” (49,102), or “resistance” (23). Vivid descriptions of needle grasp appear in a review of Japanese Acupuncture (23): “. . . What at first feels soft, weak and empty at the tip of the needle will gradually tighten up as qi gathers, and it will feel as if the tissue is contracting, with resistance felt at the tip of the needle;” “. . . the resistance in the skin increases, the needle seems heavier and there is also a feeling of movement. Conversely, when the needle moves freely back and forth as if it were in a piece of tofu, and there is no feeling of movement, qi has yet to arrive;” “. . . a sticky feeling as if stepping into deep mud and being sucked in, or as if one were trying to pick up an upside down umbrella with the handle.” Occasionally, this mechanical tissue reaction to acupuncture needling can be so powerful th
Churchill David L.
Langevin Helene M.
Downs Rachlin & Martin PLLC
Intellectual Property / Technology Law
Szmal Brian
University of Vermont
Winakur Eric F.
LandOfFree
Therapeutic and diagnostic needling device and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Therapeutic and diagnostic needling device and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Therapeutic and diagnostic needling device and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3278539