Texture mapping and other uses of scalar fields on subdivision s

Computer graphics processing and selective visual display system – Computer graphics processing – Graph generating

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

G06T 1500

Patent

active

060379499

ABSTRACT:
Methods for defining smooth scalar fields on arbitrary polygonal meshes which can be consistently carried through the subdivision process involve computing mesh vertices after subdivision to a suitable resolution and computing scalar field values at the vertices corresponding to an arbitrary smooth surface, including the limit surface. The methods allow one to define and compute the value of scalar fields over an arbitrarily dense set of points on the limit surface. Applications of these techniques in computer graphics and computer animation include: (1) the definition of pseudo-coordinates for use in parametric shading including texture mapping; (2) the assignment of smoothly varying articulation weights over the control points of a model to more efficiently define the transformation of a highly detailed object or character under specific animation controls; and (3) the assignment of smoothly varying local parameters for specifying the local behavior of dynamic or quasi-static objects or surfaces.

REFERENCES:
Hoppe, Hugues, "Progressive Meshes," Computer Graphics (SIGGRAPH) 96 Conference Proceedings), pp. 99-108 (1996).
Eck, Matthias, and Hugues Hoppe, "Automated Reconstruction of B-Spline Surfaces of Arbitrary Topological Type," Computer Graphics (SIGGRAPH 96 Conference Proceedings), pp. 325-334 (1996).
Halstead, Mark, et al. "Efficient, Fair Interpolation Using Catmull-Clark Surfaces," Computer Graphics (SIGGRAPH 93 Conference Proceedings), pp. 35-44 (1993).
Krishnamurthy, Venkat and Marc Levoy, "Fitting Smooth Surfaces to Dense Polygon Meshes," Computer Graphics (SIGGRAPH 96 Conference Proceedings), pp. 313-324 (1996).
Hoppe, Hugues, et al. "Piecewise Smooth Surface Reconstruction," Computer Graphics (SIGGRAPH 94 Conference Proceedings), pp. 295-302 (1994).
Doo, D. and M. Savin, "Behavior of Recursive Division Surfaces Near Extraordinary Points," Computer Aided Design, 10:356-360 (1978).
Catmull, E., and Clark, J., "Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes," Computer Aided Design, 10:350-355 (1978).
Lee, Yuencheng, et al., "Realistic Modeling for Facial Animation," Computer Graphics (SIGGRAPH 95 Conference Proceedings), pp. 55-62 (1995).
Parke, Frederick, "Parameterized Models for Facial Animation," IEEE Computer Graphics and Applications, pp. 61-68 (1982).
Platt, Stephen M. and Norman I. Badler, "Animating Facial Expressions," Computer Graphics, 15:245-252 (1981).
Certain, Andrew, et al., "Interactive Multiresolution Surface Viewing," Computer Graphics (SIGGRAPH 96 Conference Proceedings), pp. 91-98 (1996).
Dyn, N., "Subdivision Schemes in Computer-Aided Geometric Design," Advances in Numerical Analysis, vol. II, Clarendon Press, Oxford, pp. 36-104 (1992).
Nasri, A.H., "Boundary-Corner Control in Recursive-Subdivision Surfaces," Computer Aided Design, vol. 2, pp. 405-410 (1990).
Nasri, Ahmad H., "Surface Interpolation of Irregular Networks with Normal Conditions," Computer Aided Geometric Design, 8:89-96 (1991).
Nasri, Ahman H., "Polyhedral Subdivision Methods for Free-Form Surfaces," ACM Transactions on Graphics, 6:29-73 (1987).
Ball, A.A. and D.J.T. Storry, "A Matrix Approach to the Analysis of Recursively Generated B-Spline Surfaces", Computer-Aided Design, 18:437-442 (1986).
Ball, A.A. and D.J.T. Storry, "An Investigation of Curvature Variations Over Recursively Generated B-Spline Surfaces," ACM Transactions on Graphics, 9:424-437 (1990).
Ball, A.A. and D.J.T. Storry, "Conditions for Tangent Plane Continuity Over Recursively Generated B-Spline Surfaces," ACM Transactions on Graphics, 7:83-102 (1988).
Reif, U., A Unified Approach to Subdivision Algorithms, Department of Mathematics, University of Stuttgart.
Warren, Joe, Subdivision Methods for Geometric Design (1994).
Dyn, Nira and David Levin, "Analysis of Asymptotically Equivalent Binary Subdivision Schemes," School of Mathematical Sciences, Tel Aviv University.
Derfel, G., N. Dyn, and D. Levin, "Generalized Refinement Equations and Subdivision Processes," Ben-Gurion University and Tel-Aviv University.
Dyn, N., S. Hed, and D. Levin, Subdivision Schemes for Surface Interpolation, Department of Mathematics, Tel Aviv University (1993).
Dyn, N. and D. Levin, "Interpolating Subdivision Schemes for the Generation of Curves and Surfaces," Multivariate Interpolation and Approximation, W. Haussmann and K. Jetter, eds. Birkhauser, Verlag, Basel, pp. 91-106 (1990).
Dyn, Nira, et al., "Analysis of Uniform Binary Subdivision Schemes for Curve Design," Constructive Approximation, Springer-Verlag, New York Inc., 7:127-147 (1991).
Wilhelms, Jane and Allen Van Gelder, "Anatomically Based Modeling," Computer Graphics (SIGGRAPH 97 Conference Proceedings), pp. 173-180 (1997).
Bajaj, Chandrajit L. et al., "Adaptive Reconstruction of Surfaces and Scalar Fields from Dense Scattered Trivariate Data," Computer Science Technical Report, pp. 1-19 (1995).
Bajaj, Chandrajit L. et al., "Automatic Reconstruction of Surfaces and Scalar Fields From 3D Scans," Computer Graphics (SIGGRAPH '95 Conference Proceedings) pp. 109-118 (1995).
Brunet, Pere, "Including Shape Handles in Recursive Subdivision Surfaces," Computer-Aided Geometric Design 5:1:41-50.
Chadwick, J.E. and E. Parent, "Critter Construction: Developing Characters for Computer Animation," Proceedings of PIXIM 88, pp. 283-306 (Oct. 24-28, 1988) XP002084381.
Gudukbay, U. et al., "A Spring Force Formulation For Elastically Deformable Models," Computer & Graphics, 21:3:335-346 (May-Jun 1991) XP004083258.
Gudukbay, U. and Bulent Ozguc, "Animation of Deformable Models," Computer-Aided Design, 26:12:868-875 (Dec. 1, 1994) XP000500985.
Hahn, James K., "Realistic Animation of Rigid Bodies," Computer Graphics (Siggraph '88 Conference Proceedings) 22:4:299-308 (Aug. 1-5, 1988) XP002084382.
Hoppe, Hugues, "View-Dependent Refinement of Progressive Meshes," Computer Graphics (SIGGRAPH 97 Conference Proceedings) pp. 189-198 (Aug. 3-8, 1997) XP002085290.
Ip, Horace H.S. and C.S. Chan, "Dynamic Stimulation of Human Hand Motion Using An Anatomical Correct Heirachical Approach," Computational Cybernetics And Simulation (1997 IEEE International Conference On Systems, Man and Cybernetics) vol. 2, pp. 1307-1312 (1997) XP002084380.
Turner, Russell and Daniel Thalmann, "The Elastic Surface Layer Model for Animated Character Construction," Communicating With Virtual Worlds (Proceedings of Computer Graphics International '93), pp. 399-412 (Jun. 21-25, 1993) XP002084379.
International Search Report dated Nov. 27, 1998 for International Application No. PCT/US 98/15702 (International Filing Date: Jul. 29, 1998.
International Search Report dated Dec. 8, 1998 for International Application No. PCT/US 98/15703 (International Filing Date: Jul. 29, 1998).
International Search Report dated Nov. 4, 1998 for International Application NO. PCT/US 98/15704 (International Filing Date: Jul. 29, 1998).
PCT Written Opinion dated May 10, 1999 for International Application No. PCT/US98/15703.
Lee, Yuencheng et al., "Realistic Modeling for Facial Animation", Computer Graphics Proceedings, SIGGRAPH 1995, Annual Conference Series, 1995, pp. 55-62.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Texture mapping and other uses of scalar fields on subdivision s does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Texture mapping and other uses of scalar fields on subdivision s, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Texture mapping and other uses of scalar fields on subdivision s will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-174274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.