Tetrahalosilane blends for treating silica

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S205000, C523S213000, C523S214000, C523S217000, C524S492000, C524S574000, C524S575000, C524S575500, C106S489000, C106S490000, C423S335000, C423S342000, C428S403000, C428S404000, C428S405000

Reexamination Certificate

active

06822020

ABSTRACT:

FIELD OF THE INVENTION
This invention is related to a method of making a modified silica filler in which silica is contacted with a blend or mixture of a diorganodihalosilane and a tetrahalosilane in a weight ratio of 1:0.1 to 1:2, respectively.
BACKGROUND OF THE INVENTION
This is an improvement in methods of modifying silica fillers, as described for example, in U.S. Pat. No. 6,051,672 (Apr. 18, 2000), assigned to the same assignee as the present invention. While the '672 patent contains a general formula (1) which broadly interpreted includes tetrahalosilanes, (i) no particular tetrahalosilane compounds are disclosed in the '672 patent, (ii) the '672 patent does not describe any particular mixture or blend of tetrahalosilane compounds and diorganodihalosilane compound as being any more effective than any other blend, (iii) nor does the '672 patent teach any particular ratio of these silane compounds as being necessary to achieve new and unexpected results, i.e., the ability to deposit more siloxane on silica, vis a viz, improved its hydrophobicity.
Furthermore, it is generally recognized in the art that treating agents used to impart hydrophobicity to surfaces should contain organic or hydrocarbon groups characteristic of fats, oils, and waxes such as alkyl groups. However, since tetrahalosilanes such as silicon tetrachloride SiCl
4
contain no organic or hydrocarbon groups in their molecule, it was highly unexpected that they would possess this functional utility.
SUMMARY OF THE INVENTION
The invention is directed to a method of making modified silica fillers in which silica is contacted with a blend or mixture of organosilicon compounds. In particular, it is directed to an improvement in treating silica with blends or mixtures of diorganodihalosilanes and tetrahalosilanes, in weight ratios of 1:0.1 to 1:2, respectively.
Preferably, the weight ratio is 1:0.3 to 1:1, most preferably 1:0.5. Similarly, the blend or mixture is preferably a dialkyldichlorosilane and a tetrahalosilane such as silicon tetrachloride, silicon tetrabromide, and silicon tetraiodide, most preferably dimethyldichlorosilane and silicon tetrachloride. In some additional embodiments, the blend or mixture may also comprise compositions containing (i) dimethyldichlorosilane, (ii) silicon tetrachloride, and (iii) mercaptopropyltriethoxysilane.
These and other features of the invention will become apparent from a consideration of the detailed description.
DETAILED DESCRIPTION OF THE INVENTION
The silica used to make the modified silica fillers according to this invention are the colloidal or precipitated silicas of the type used to formulate polymeric compositions such as rubber, particularly those rubber compositions used in the manufacture of vehicle tires for improving the mechanical properties of tire rubber. Such silicas are described in detail in the '672 patent, and in U.S. Pat. No. 5,908,660 (Jun. 1, 1999), to which reference may be had and which are considered incorporated herein by reference.
Mineral fillers such as silica, having a small particle size and a large surface area, are capable of increasing the tensile strength of rubber compounds, and therefore are useful as a reinforcing material for rubber; particularly when the mineral surfaces of the filler are converted to hydrophobic low energy surfaces. Typically, this is carried out using methylchlorosilanes which react with the surface water of mineral surfaces or the water present in a reaction, i.e., hydrolysis and condensation of silanols, liberating hydrochloric acid and concurrently depositing a very thin film of methylpolysiloxanes with low critical surface tensions not wetted by water. A very simplified representation is ≡Si—Cl+H
2
O→≡SiOH+HCl→≡Si—O—Si≡.
Among some of the other reasons it may be desirable to impart hydrophobicity to silica surfaces, is that it renders them easily dispersible in organic systems such as defoamers, and in food, dairy, and vegetable processing. In other applications, silica particles rendered sufficiently hydrophobic can be held at oil-water interfaces. Surfaces of oxide minerals modified with monolayers of organofunctional silanes to render such surfaces hydrophobic make them useful in oil recovery, ore flotation, pigment dispersion, and for surface modification of metals. These water repellent, low energy surfaces are useful in water resistant treatments for masonry, electrical insulation, packing for chromatography, and in non-caking fire extinguishers. Ceramic insulators treated in this fashion are capable of maintaining high electrical resistivity under humid conditions. Forming an insoluble water resistant methylpolysiloxane film on a surface protects brick, mortar, sandstone, and concrete from spalling, cracking, and efforescence.
When silicone rubbers are reinforced with untreated silicas, reactions can take place causing the mixture to become tough and nervy, making it difficult to further process the mixture unless processing is performed immediately after the mixture is prepared. Reactions known as structuring and crepe aging can be prevented by treating silica surfaces with materials capable of reacting with hydroxyl radicals present on silica surfaces. While many methods have been devised for treating silica as powders and water dispersions to prevent structuring and crepe aging, the present invention provides a simplified avenue for producing treated silicas useful in reinforcing silicone rubbers as well.
The silica treating agents according to the invention are blends of organodichlorosilanes and tetrahalosilanes such as silicon tetrachloride, silicon tetrabromide, and silicon tetraiodide. The organodichlorosilanes may contain alkyl groups, cycloalkyl groups, araalkyl (arylalkyl) groups, alkaryl (alkylaryl) groups, aryl groups, and certain substituted groups which are not reactive with respect to silica surfaces.
Some examples of alkyl groups are methyl, ethyl, propyl, butyl, hexyl, octyl, decyl, dodecyl, octadecyl, and nonadecyl. Some examples of cycloalkyl groups are cyclobutyl and cyclohexyl. Some examples of araalkyl (arylalkyl) groups are benzyl, phenylethyl, and 2-phenylpropyl. Some examples of alkaryl (alkylaryl) groups are tolyl and mesityl. Some examples of aryl groups are phenyl, xenyl, naphthyl, and anthracyl. Some examples of substituted groups which are not reactive with respect to a silica surface are halogenated alkyl groups and aryl groups such as chloromethyl, dichloromethyl, trichloromethyl, 3-chloropropyl, chlorocyclohexyl, chlorophenyl, and dichloroxenyl; alkyl groups containing alkoxy radicals such as methoxy, ethoxy, butoxy, and pentoxy; alkyl groups containing sulfido (—S—), disulfido, or polysulfido radicals; and alkyl groups containing cyano (—C≡N) radicals.
Representative of some organodichlorosilanes and tetrahalosilanes which can be used according to this invention are silicon tetrachloride, silicon tetrabromide, silicon tetraiodide, n-butylmethyldichlorosilane, t-butylmethyldichlorosilane, t-butylphenyldichlorosilane, cyclohexylmethyldichlorosilane, n-decylmethyldichlorosilane, di-n-butyldichlorosilane, di-t-butyldichlorosilane, dicyclohexyldichlorosilane, dicyclopentyldichlorosilane, diethyldichlorosilane, di-n-hexyldichlorosilane, dimesityldichlorosilane, dimethyldichlorosilane, di-n-octyldichlorosilane, di-phenyldichlorosilane, di-(p-tolyl)dichlorosilane, docosylmethyldichlorosilane, dodecylmethyldichlorosilane, ethylmethyldichlorosilane, n-heptylmethyldichlorosilane, hexylmethyldichlorosilane, n-octylmethyldichlorosilane, phenylethyldichlorosilane, phenylmethyldichlorosilane, and p-tolylmethyldichlorosilane.
A general method of making modified silica fillers according to the invention is described below in Example A, although the modified silica fillers can be made by any known and accepted technique, for example, as described in detail in the '660 patent, the '672 patent, and in U.S. Pat. No. 6,384,125 (May 7, 2002). While these patents describe general methods, they fail to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tetrahalosilane blends for treating silica does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tetrahalosilane blends for treating silica, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tetrahalosilane blends for treating silica will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3336344

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.