Test method for evaluating soluble polymer growth when...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S059000, C526S348200, C526S082000, C436S085000

Reexamination Certificate

active

06274683

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a test method for evaluating the effectiveness of various compounds in their ability to prevent polymer growth via a “living” polymerization mechanism when the “living” polymer is dissolved in the monomer stream.
2. Description of Related Art
Many ethylenically unsaturated monomers undesirably polymerize at various stages of their manufacture, processing, handling, storage, and use. Polymerization, such as thermal polymerization, during their purification results in the loss of the monomer, i.e., a lower yield, and an increase in the viscosity of any tars that may be produced. The processing and handling of the higher viscosity tars then requires higher temperature and work (energy cost) to remove residual monomer.
A wide variety of compounds has been proposed and used for inhibiting uncontrolled and undesired polymerization of ethylenically unsaturated monomers. However, many of these compounds have not been fully satisfactory. Accordingly, there has been a continuing need in the art for a testing means by which compositions intended for use as monomer polymerization inhibitors can be evaluated.
There are several mechanisms by which polymerization inhibitors work. One mode of action for polymerization inhibitors is for the inhibiting species to combine with the propagating polymer chain such that the polymerization of that polymer chain stops, i.e., a termination reaction. If such an inhibitor-terminated polymer chain is capable of participating in a dynamic equilibrium between a dormant species (the inhibitor-terminated chain) and an active polymer chain, it would be considered a “living” or quasiliving polymer. For example, Ivan,
Macromol. Synp.
88:201-215 (1994) describes quasiliving polymerization as a polymerization in which “. . . only a portion of chain ends are active (propagating) and these are in equilibria with inactive (dormant, nonpropagating) chains . . . ” Shigemoto et al.,
Macromol. Rapid Commun.
17:347-351 (1996) state, “Well-defined polymers can be prepared by controlled/“living” radical polymerization in the presence of relatively stable radicals. These systems employ the principle of dynamic equilibration between dormant species and growing radicals via reversible homolytic cleavage of a covalent bond in dormant species.” Further, Greszta et al.,
Macromolecules
29:7661-7670 (1996) state, “The reversible homolytic cleavage of dormant species can be accomplished by either thermal, photochemical, or catalytic activation. The most successful approaches are as follows: homolytic cleavage of alkoxyamines and dithiocarbamates, use of various organometallic species, and catalyzed atom transfer radical polymerization.” Such a “living” polymer is capable of increasing in molecular weight (growing) through its reaction with additional monomer units of the same or different types of polymerizable monomers.
The method by which this “living” polymer grows is termed the “living” polymerization mechanism, and is depicted below.
M−Inh→M*+*Inh  (1)
M*+*Inh→M−Inh  (2)
M*+M′→M−M′*  (3)
M−M′*+*Inh→M−M′−Inh  (4)
Reactions (1) and (2) depict the dynamic equilibrium, with (2) being the termination reaction. Reaction (3) depicts growth of the polymer chain. Reaction (4) depicts re-termination of the growing polymer chain with the inhibiting species. The amount of growth over any period of time is dependent on the relative rate at which (2) occurs versus (3), as long as (1) occurs to some extent. The faster (2) is relative to (3), the more time is needed for significant growth of the polymer. Under the conditions in which inhibitors are normally used, the concentration of the inhibiting species should be sufficiently high to cause reaction (2) to be much faster than reaction (3), otherwise it would not be an effective inhibiting system for commercial use. However, we have realized that even at an effective inhibiting amount of the inhibitor, growth can still occur, given sufficient time and temperature.
There are at least two scenarios in which “living” polymer can remain in a monomer purification train for an excessive amount of time.
First, the use of recycle can significantly increase the amount of time that the “living” polymer can remain in the purification train. To recycle unused inhibitor that is left in the purification stream after removal of the monomer, a portion of the residual stream is added to a feed stream earlier in the purification train. This residual stream typically contains inhibitor, small amounts of monomer, impurities in the monomer stream that have been concentrated by the purification process, and polymer formed during the purification process. Recycling this polymer will allow it time to grow if it is “living” polymer and the conditions of the purification train allow the “living” polymerization mechanism to occur. If this polymer grows via the “living” polymerization mechanism, excessive polymerization would cause loss in product yield, increased waste residues from the process, and potential plugging of equipment due to excessively high molecular weight polymer in the purification stream.
Second, occasionally, conditions in the plant/purification process can result in the formation of polymer within the purification train that is not dissolved by the monomer stream. If this polymer is caught in a deadspace, or if it attaches to the metal on the inside of the equipment, it will not be washed out of the system. Thus, the polymer will remain within the system indefinitely (potentially for two or more years). If this polymer grows via the “living” polymerization mechanism, it could coat the inside of the equipment, causing inefficient separation of the monomer stream components and/or insufficient heating of the stream to enable purification. Such a situation would cause loss in product yield and could potentially cause an unscheduled shut-down of the plant in order to clean out the undissolved polymer in the equipment. Such a shut-down results in loss of monomer production and additional expense to clean out and dispose of the undissolved polymer.
SUMMARY OF THE INVENTION
Given the potential loss in monomer yield as well as loss in monomer production and the additional economic drawbacks due to increased waste residues and cleaning of plugged equipment, a test method has now been developed to evaluate the effectiveness of various compounds in their ability to prevent polymer growth via a “living” polymerization mechanism when the “living” polymer is dissolved in the monomer stream.
This test method comprises:
A) producing polymer in solution via any test normally used to evaluate polymerization inhibitors, such as, but not limited to, static tests, dynamic tests, small scale simulations of a distillation column and/or reboiler, and pilot units for a distillation train,
B) collecting the polymer-containing solution, and
C) re-subjecting the polymer-containing solution to the test conditions.
More particularly, the present invention is directed to an improvement in a method for evaluating the efficiency of polymerization inhibitors, wherein the improvement comprises:
A) producing dissolved polymer in a solution comprising monomer and at least one inhibitor by means of any test known in the art to be useful for evaluating polymerization inhibitors,
B) collecting the polymer-containing solution,
C) measuring the degree of polymerization of the monomer in the collected solution, and
D) re-subjecting the polymer-containing solution to the test conditions of A).
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As stated above, the present invention is directed to a test method that comprises:
A) producing polymer in solution via any test normally used to evaluate polymerization inhibitors, such as, but not limited to, static tests, dynamic tests, small scale simulations of a distillation column and/or reboiler, and pilot units for

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Test method for evaluating soluble polymer growth when... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Test method for evaluating soluble polymer growth when..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Test method for evaluating soluble polymer growth when... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2548177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.