Tertiary alkyl ester preparation

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C560S241000

Reexamination Certificate

active

06194602

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention provides an improved method for the preparation of esters such as t-butyl acetate by reaction of a tertiary olefin with acetic acid in the presence of a large pore zeolite catalyst such as Zeolite Y, Zeolite X or Zeolite beta.
2. Description of the Prior Art
It is known to produce esters by the reaction of an olefin such as isobutylene with a lower carboxylic acid over a sulfonate group-containing cation exchange resin. See U.S. Pat. No. 3,678,099 and the references disclosed therein including U.S. Pat. Nos. 2,678,332, 3,031,495, 3,172,905 and 3,173,943.
A problem which is encountered in such prior procedures has been the tendency for polymerization of the olefin to occur during the esterification which results both in significant yield losses and in the formation of products such as olefin dimer which are difficult to separate from the product ester. For example, isobutylene dimer forms an azeotrope with t-butyl acetate thus making separation exceedingly difficult.
Problems of diisobutylene formation can be substantially overcome through the use of a selectivity enhancing modifier such as tertiary butanol. However, although the use of such a modifier has striking advantages, its use entails additional processing costs and purification procedures.
Other processes are described. For example, U.S. Pat. No. 3,492,341 describes the reaction of isobutylene with acetic acid to form ester using a mordenite aluminosilicate catalyst.
U.S. Pat. No. 4,365,084 describes ester production by reaction of a linear or slightly branched olefin with acetic acid using a catalyst such as HZSM-5. The use of olefins having unsaturation at the number 2 carbon atom is excluded.
U.S. Pat. No. 4,461,729 is similar to 4,365,084 and contains the additional step of hydrolyzing the ester to form secondary alcohol.
U.S. Pat. No. 4,465,852 relates to ester preparation by reaction of olefin with acetic acid. Although a great number of olefins are mentioned, including isobutylene, and a great number of catalysts are mentioned, including ZSM-5, the olefins exemplified are ethylene and propylene and the claims are limited to ethylene, propylene and butylene.
Copending patent application Ser. No. 09/022183, now U.S. Pat. No. 5,994,578 filed Feb. 11, 1998 describes ester preparation by reaction of an olefin such as isobutylene with acetic acid using a ZSM-5 catalyst. Data are presented indicating that at the reported conditions of the testing, poor results were achieved with large pore zeolite catalyst, Zeolite beta.
BRIEF DESCRIPTION OF THE INVENTION
In accordance with the invention, olefin and lower carboxylic acid are reacted in the presence of a large pore acidic zeolite such as Zeolite Y, Zeolite X, or Zeolite beta at conditions where ester is formed at high rates and selectivity, and whereby the formation of olefin polymerization products is maintained at a very low level.
DETAILED DESCRIPTION
The present invention is applicable to the formation of esters having the formula
wherein R
1
is a C
4
or C
5
tertiary alkyl group and R is hydrogen or a C
1
-C
2
alkyl group. T-butyl acetate is an especially preferred product.
In accordance with the invention, olefin and organic carboxylic acid are reacted in the liquid phase to form ester over a solid acidic large pore size zeolite catalyst. The large pore zeolites used in accordance with the invention are those having twelve-ring pores as described, for example, at page 19 of “Introduction to Zeolite Science and Practice”, van Bekkum et al. Elsevier (1991). Zeolite Y is especially useful as is Zeolite beta and Zeolite X. The zeolites employed are suitably made with conventional binders, eg. alumina, silica, and the like.
The conditions at which the esterification reaction is carried out are exceedingly important. The large pore acidic zeolites are extremely active catalysts and unless certain reaction conditions are employed, excessive amounts of olefin polymer are obtained.
The esterification reaction is carried out at pressures sufficient to maintain the liquid phase, usually 50 psig or higher. The upper pressure limit is governed largely by practical considerations , little is to be gained by operating at pressures in excess of 800 psig. Operation at 250-500 psig is generally preferred.
Reaction temperature is important, temperatures of about 20 to 80° C. are suitable, temperatures of about 35 to 50° C. are preferred.
Excessive contact times, especially at the higher temperature ranges are to be avoided. Reactant liquid weight hourly space velocities (WHSV) of about 10-100 hr
−1
, preferably 25 to 50 hr
−1
are employed. These figures are based on the large pore zeolite content of the catalyst contact solid.
The mol ratio of olefin to carboxylic acid can vary widely, ratios of 0.1-10 mols olefin per mol carboxylic acid are generally useful, ratios of 0.125 to 0.5 mols olefin per mol carboxylic acid are especially useful. The higher amounts of acid relative to olefin improve reaction selectivity and further aid in suppressing dimer make.
Where a selectivity enhancing modifying agent such as described in copending application Ser. No. 08/816,704 filed Mar. 13, 1997 is used, reaction conditions outside the above ranges can be used. For example, higher temperatures and longer contact times can be employed as can higher olefin to carboxylic acid ratios where the modifier is used. For example, reaction temperatures in the upper part of the 20-80° C. range can be used and liquid hourly space velocities below 10 hr
−1
, eg. as low as 4 hr
−1
can be used where a selectivity enhancing modifier is used.
Especially preferred selectivity enhancing modifiers, where one is used, are t-butyl alcohol, t-amyl alcohol and the lower (C
1
-C
3
) alkyl ethers thereof such as methyl tertiary butyl ether, methyl tertiary amyl ether, and the like. Where used, at least 1 wt % of modifier based on the feed is used up to about 50 wt %.


REFERENCES:
patent: 2678332 (1954-05-01), Cottle et al.
patent: 2882244 (1959-04-01), Milton
patent: 3031495 (1962-04-01), Young et al.
patent: 3037052 (1962-05-01), Bortnick et al.
patent: 3130007 (1964-04-01), Breck
patent: 3172905 (1965-03-01), Eckert et al.
patent: 3173943 (1965-03-01), Hess et al.
patent: 3190939 (1965-06-01), Benesi
patent: 3308069 (1967-03-01), Wadlinger et al.
patent: 3492341 (1970-01-01), Trevillyan
patent: 3678099 (1972-07-01), Kemp
patent: 3767568 (1973-10-01), Chen
patent: 4365084 (1982-12-01), Young
patent: 4443379 (1984-04-01), Taylor et al.
patent: 4461729 (1984-07-01), Young
patent: 4465852 (1984-08-01), Sato
patent: 5866714 (1999-02-01), Szady et al.
Pavlov et al., Bull. Soc. Chem. Fr, No. 12, pp. 2985-2986, 1974.
Pavlov et al, “General Preparative Method for the Esterifiction of Carboxylic Acids with Isobutylene in the Presence of Tertbutylene”, Bull. Soc. Chem. Fr, No. 12, pp. 2985-2986 (1974).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tertiary alkyl ester preparation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tertiary alkyl ester preparation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tertiary alkyl ester preparation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2564329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.