Terminally modified, amino, polyether siloxanes

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Biocides; animal or insect repellents or attractants

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S407000, C504S116100, C516S198000, C516S203000, C516S204000, C556S425000, C556S444000, C556S445000

Reexamination Certificate

active

06673359

ABSTRACT:

BACKGROUND OF THE INVENTION
Many herbicides require the addition of an adjuvant to the spray mixture to provide wetting and spreading on foliar surfaces. Often that adjuvant is a surfactant, which can perform a variety of functions, such as increasing spray droplet retention on difficult to wet leaf surfaces, or to provide penetration of the herbicide into the plant cuticle. These adjuvants are provided either as a tankside additive or used as a component in herbicide formulations.
Gaskin, et al., (
Pestic. Sci.
1993, 38, 185-192) demonstrated that some trisiloxane ethoxylates (TSE), such as Silwet L-77® surfactant (available from OSi Specialties, Inc. of Greenwich, Conn.), can antagonize cuticular penetration of a herbicide into grasses, when compared to the herbicide alone. The term antagonism is used to indicate that the treatment of herbicide plus adjuvant is less effective than the comparative herbicide treatment.
Gaskin, et al., (
Pest. Sci.
1993, 38, 192-200) showed that this antagonism can be mitigated if the number of ethylene oxide (EO) units contained in the TSE is increased to 17 or more; however, superspreading of the TSE is reduced dramatically once the degree of ethoxylation exceeds about 12 EO, and TSE's containing the higher EO adducts show spreading properties similar to conventional nonsilicone surfactants.
Sandbrink, et al., (
Pest. Sci.
1993, 38, 272-273) published that a TSE antagonized glyphosate performance relative to glyphosate alone in the control of
Panicum maximum
Jacq. Snow, et. al.,
Langmuir,
1993, 9, 424-30, discusses the physical properties and synthesis of novel cationic siloxane surfactants. These siloxanes are based on the reaction of a chloropropyl modified trisiloxane with an alkanolamine, such as N-methylethanolamine, which was further reacted with a halide to make a quaternary surfactant.
Petroff, et al., (EP 92116658) describes the use of cationic, quaternary trisiloxanes to enhance the efficacy of glyphosate on velvetleaf, a broadleaf weed. Henning, et al., (DE4318537) describes cationic siloxanyl modified polyhydroxy hydrocarbon or carbohydrate for use with plant protection agents. These compounds are derived from a saccharide containing 1 to 10 pentose and/or hexose units, modified with a quaternary ammonium group, and a siloxane moiety.
Reid, et al., (U.S. Pat. No. 3,389,160) describes amino modified siloxane alkoxylates where the amino functionality appears as the terminal group on the alkyleneoxide moiety, opposite the siloxane group.
Policello in PCT WO 97/32475 discloses amino modified siloxanes wherein the amine is bound by an ether bond to the siloxane backbone wherein the amine may be terminal or pendant to the backbone.
SUMMARY OF THE INVENTION
The present invention teaches the composition of terminally modified, amino, polyether, siloxanes, known henceforth as amino siloxane alkokylates, and their use as adjuvants. The amino siloxane alkoxylates of the present invention enhance the efficacy of agrichemicals on plants as compared to conventional TSE's alone. Optionally, the amino siloxane alkoxylates of this invention may be blended with conventional trisiloxane alkoxylates. Blends of these unique amino siloxanes with more traditional trisiloxane alkoxylates (TSA) provide superspreading properties, on difficult to wet surfaces, that are equal to, or greater than what is contributed by the individual components.
DETAILED DESCRIPTION OF THE INVENTION
These compositions are especially useful in overcoming the antagonistic effects on pesticide efficacy associated with superspreading, TSAs. Mixtures of the compositions of the present invention with TSAs provide enhanced spreading properties relative to the individual components alone. In addition, these products provide a low aqueous surface tension (≦25 mN/m at 0.1 wt %), which is desirable for enhanced spreading of pesticide solutions.
Composition
The amino siloxane alkoxylates of the present invention have the average general formula:
ZMe
2
SiO[(Me)
2
SiO]
x
SiMe
2
Q,
wherein x=0 to 2, preferably 1, Q=C
a
H
2a
O(C
2
H
4
O)
b
(C
3
H
6
O)
c
R, a=2 to 4, preferably 3, b=1 to 12, preferably 3 to 8, c=0 to 5, providing that when c is>0, (b+c)=2 to 12, preferable=4 and 8, R is hydrogen, acetyl or a hydrocarbon radical between 1 and 4 carbon atoms, Z is BN[DO(C
d
H
2d
O)
e
R]
2−Z
V
z
each d is 2 to 4, preferably 2 to 3, each e is 0 to 15, preferably 0 to 8, z=0 to 2, preferably 2, each V is a univalent group, D is an alkylene divalent bridging group on which there may be hydroxyl substituents, and B is a divalent bridging group.
V groups preferably are alkyl (which may be branched, linear or cyclic) of less than 8 carbons, which may or may not contain hydroxyl functionalities. Another preferred V is an alkyl amine functionality, the nitrogen of which may be further substituted (e.g. with an alkyl) or be further alkoxylated. Exemplary V are ethyl, 2-hydroxyethyl, 3-hydroxypropyl, methyl, and 2-aminoethyl.
B groups may be of the formula D(O)
y
(C
d
H
2d
O)
j
D wherein D and d are as above, j=0 to 8, preferably 0 to 2, and y=0 or 1. Preferably D has 2 to 6 carbon atoms. B may also preferably be a divalent alkylene group of C
2
-C
4
.
When Q or B is a mixture of oxyalkylenes, it may be blocked or random. One skilled in the art will understand the advantages in the position of the oxyethylene relative to the oxypropylene, when the alkyleneoxide group is blocked.
The Z groups may include protonated amines, i.e, where there is a hydrogen ion attached to the nitrogen in the Z group, which can occur to the amino siloxane alkoxylates under acidic conditions. Also contemplated herein are quaternary versions of Z, i.e., where there is a third R
3
group on the nitrogen in Z, but said quaternary compounds are not preferred for use in the present invention.
Preferred Z structures are wherein R is hydrogen or methyl, D is a divalent organic group of 2 to 4 carbons, B is a divalent organic group of 2 to 4 carbons, in which at least one carbon radical contains a hydroxyl group, and V is 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, propyl, ethyl or methyl. Preferred amino siloxane alkoxylates are trisiloxanes.
In addition the compositions of the present invention optionally may include nonionic siloxane alkoxylates of the general formula:
R
4
Me
2
SiO[MeSi(G)O]
g
SiMe
2
R
4
wherein g=0 to 2, preferably 1.
G=C
a
H
2a
O(C
2
H
4
O)
t
(C
3
H
6
O)
w
R.
and R are as above, t=3 to 12, preferably 4 to 8
w=0 to 8, providing that when w is >0, (t+w) is preferably between 5 and 12. R
4
is G, or an alkyl of one to four carbons. The preferred nonionic siloxane alkoxylates are trisiloxane alkoxylates, where g=1, d=3, t=4 to 8, w=0, R
4
is Me, R is H or Me.
The compositions of the present invention also optionally include ingredients for use herein are pesticides, especially acid functionalized ones, i.e., compounds that contain at least one carboxylic, sulfonic or phosphonic acid group or their salt or ester. The term pesticide means any compound used to destroy pests, e.g., rodenticides, fungicides, and herbicides. Illustrative examples of pesticides which can be employed include, but are not limited to, growth regulators, photosynthesis inhibitors, pigment inhibitors, mitotic disrupters, lipid biosynthesis inhibitors, cell wall inhibitors, and cell membrane disrupters. The amount of pesticide employed in compositions of the invention varies with the type of pesticide employed. More specific examples of pesticide compounds that can be used with the compositions of the invention are: phenoxy acetic acids, phenoxy propionic acids, phenoxy butyric acids, benzoic acids, triazines and s-triazines, substituted ureas, uracils, bentazon, desmedipham, methazole, phenmedipham, pyridate, amitrole, clomazone, fluridone, norflurazone, dinitroanilines, isopropalin, oryzalin, pendimethalin, prodiamine, trifluralin, glyphosa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Terminally modified, amino, polyether siloxanes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Terminally modified, amino, polyether siloxanes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Terminally modified, amino, polyether siloxanes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3223840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.